
Samedi 12 avril 2025

OPTION SCIENCES NUMÉRIQUES
MP - PC - PSI - PT - TSI

DURÉE : 2 HEURES

Conditions particulières :

Calculatrice et documents interdits

Indiquez votre code candidat SCEI sur le QCM
qu’il faudra insérer dans votre copie d’examen

Le sujet se compose dŠun problème et dŠun questionnaire à choix multiples. Le questionnaire à choix multiples devra

être inséré dans votre copie. Les fonctions à produire dans ce sujet devront être rédigées en langage Python et ne pas

avoir recours à lŠusage de bibliothèques. Il est possible dŠécrire des fonctions auxiliaires non explicitement demandées

à condition de les documenter et de les déĄnir avant dŠen faire usage.

Problème – Le KenKen

Le KenKen est un jeu constitué d’une grille carrée de n cases de coté (en général n ⩾ 3) ; n sera alors appelé
taille du jeu. La grille comporte des ensembles de cases, délimités par un contour plus épais, que l’on appellera des
zones. Dans chacune de ces zones est précisé une contrainte : un nombre, généralement suivi d’un opérateur. Ces
contraintes et leur format seront détaillés plus loin. Voici l’exemple d’une grille de taille 4 :

1

3−

4+

2/ 1−

12× 12+

Le but du jeu est de remplir chaque case de la grille avec un entier, de sorte que chaque ligne et chaque colonne
comporte chaque entier de 1 à n et de façon à ce que les entiers présents dans les cases d’une même zone respectent
la contrainte de la zone définie comme suit :

— si la zone contient une seule case : la contrainte est un simple nombre indiquant la valeur que doit contenir
cette case ;

— si la zone comporte au moins deux cases : la contrainte est un chiffre r suivi d’un opérateur parmi +, ×, − et
/ dont la signification est donnée par la tableau ci-après :

opérateur description de la contrainte

+ la somme des entiers dans les cases de la zone doit donner r.
× le produit des entiers dans les cases de la zone doit donner r.
− la différence des deux entiers des cases de la zone doit donner r (dans un sens ou dans l’autre).

Attention, cette contrainte ne sŠapplique quŠà des zones de 2 cases.

/ le quotient des deux entiers des cases de la zone doit donner r (dans un sens ou dans l’autre).
Attention, cette contrainte ne sŠapplique quŠà des zones de 2 cases.

Une grille de KenKen bien formée ne comporte qu’une seule solution satisfaisant ces contraintes. Voici la solution de
l’exemple précédent :

1

3−

4+

2/ 1−

12× 12+

1

4

1

2

3

4

2

3 2 1

4 2

1 3

3 4

CPGE EPITA IPSA ESME 2025 – Épreuve Option Sciences Numériques | Page 1 sur 6

On choisit de représenter chaque zone par un dictionnaire contenant les champs val, op et cases ; val et op

contiennent respectivement le nombre et l’opérateur associés à la zone tandis que cases est la liste des cases de
la zone, représentées par le couple de leurs coordonnées. On choisit de repérer les cases en ligne puis colonne en
commençant par la case supérieure gauche. Ainsi, pour une grille de taille n, la case supérieure gauche aura pour
coordonnées (0, 0), la case inférieure gauche (n − 1, 0) et la case inférieure droite : (n − 1, n − 1). Pour les zones ne
comportant qu’une seule case, le champ op sera une chaîne de caractères vide.

Dans l’exemple précédent, la zone comportant la case de coordonnées (0, 0) pourra être représentée par le diction-
naire {"val":12, "op":"×", "cases": [(0,0),(1,0),(1,1)]} et la zone réduite à la case de coordonnées
(0, 3) pourra être représentée par : {"val":1, "op":"", "cases": [(0,3)]}.

Un jeu de KenKen sera alors intégralement décrit par sa taille n et par la liste des zones qui le composent. De plus,
on représente l’état du remplissage d’une grille par une liste de listes d’entiers de sorte que la sous-liste d’indice k
corresponde à la valeur des cases situées sur la ligne k (parcourues de gauche à droite). Les cases non remplies de la
grille se verront attribuer la valeur 0. Dès lors, la grille de l’exemple dont on aurait effectué un remplissage partiel (en
ne remplissant que la première ligne) est représentée par la liste [[2,3,4,1],[0,0,0,0],[0,0,0,0],[0,0,0,0]].

Autour des contraintes

Question 1 Écrire une fonction test_somme qui, étant donné une liste d’entiers et un entier v, retourne True si la
somme des éléments de la liste vaut v et False sinon.

Question 2 Écrire une fonction test_quotient qui, étant donné une liste de deux entiers non nuls et un entier
v, retourne True si la valeur v peut-être obtenue en calculant le quotient des deux entiers (dans un sens ou dans
l’autre) et False sinon.

On considère à présent disposer des fonctions suivantes :
— test_produit qui, étant donné une liste d’entiers et un entier v, retourne True si le produit des éléments de

la liste vaut v et False sinon ;

— test_difference qui, étant donné une liste de deux entiers et un entier v, retourne True si la valeur v

peut-être obtenue en calculant la différence des deux entiers (dans un sens ou dans l’autre) et False sinon.

Question 3 Écrire une fonction test_zone qui, étant donné une grille remplie et une zone, retourne True si la
contrainte de zone est respectée et False sinon.

Question 4 Écrire une fonction test_grille qui, étant donné une grille (complètement ou partiellement remplie)
et une liste de zones, retourne True si la grille respecte les contraintes de chacune des zones, et False sinon. On
considèrera que cette fonction ne sera appelée que pour des zones portant sur des cases remplies de la grille.

Question 5 Écrire une fonction test_conflit qui, étant donné une grille dont les i premières lignes sont supposées
remplies et l’entier i, retourne False si l’un au moins des éléments de la ligne i est déjà présent parmi les éléments
des lignes précédentes situés sur la même colonne que lui. Dans le cas contraire la fonction renverra True.

On souhaite à présent pouvoir regrouper les contraintes de zones selon le plus grand numéro de ligne des cases
qu’elles comportent.

Question 6 Écrire une fonction ligne_max qui, étant donné une zone, retourne le plus grand numéro de ligne parmi
ceux des cases qu’elle comporte. On interdit pour cette question l’usage des fonctions min et max de Python.

Question 7 Écrire une fonction zones_par_ligne_max qui, étant donné la taille n d’un jeu et la liste de ses zones,
retourne une liste comportant n sous-listes. La sous-liste d’indice k sera la liste des zones du jeu telles que le numéro
de ligne maximal des cases qui la composent est égal à k.

Afin de vérifier si les zones sont bien formées, on souhaite construire une fonction permettant de déterminer si une
liste de cases est connexe ; c’est-à-dire s’il est possible de se déplacer entre n’importe quelles cases de la liste en
passant uniquement par des cases de cette liste et au moyen de déplacements horizontaux et/ou verticaux.

CPGE EPITA IPSA ESME 2025 – Épreuve Option Sciences Numériques | Page 2 sur 6

Question 8 Écrire une fonction test_connexite qui, étant donné une liste de cases (exprimées par leurs coordon-
nées), retourne True lorsqu’elle est connexe et False sinon. Cette fonction pourra opérer comme si elle parcourait le
graphe formé par les cases de la liste dont seraient adjacentes les cases se touchant horizontalement ou verticalement.

Itérateur de permutations

On rappelle qu’une permutation de J1, nK est une bijection de J1, nK dans J1, nK. On choisit de représenter une per-
mutation σ de J1, nK par la liste d’entiers [σ(1), · · · , σ(n)]. Ainsi les listes comportant une et une seule fois chaque
entier de 1 à n représentent toutes les permutations de J1, nK.

On considère l’ordre des permutations de J1, nK comme étant l’ordre lexicographique des listes qui les représentent :

[a1] < [b1] ⇔ a1 < b1


∀p ⩾ 2, [a1, · · · , ap] < [b1, · · · , bp] ⇔ a1 < b1 ou
a
a
1

2,
=
· ·

b
·

1

[, ap] < [b2, · · · , bp]

Ainsi [2, 4, 1, 3] < [2, 4, 3, 1] < [3, 1, 2, 4] < [3, 1, 4, 2].

Question 9 Donner les 3 permutations qui suivent [3, 1, 4, 2] dans lŠordre lexicographique.

Question 10 Écrire une fonction identite prenant en paramètre un entier n et retournant la permutation [1, . . . , n].

Question 11 Écrire une fonction inverse prenant en paramètres une permutation p de J1, nK et 2 entiers i et j.
Cette fonction modifiera la permutation p en inversant lŠordre des éléments dont lŠindice des cases appartient à Ji, jK.

Cette fonction ne fera rien dans le cas où i ⩾ j et on supposera que cette fonction nŠest appelée que lorsque i et j sont
dans J1, nK.

Question 12 Écrire une fonction indice_pps prenant comme paramètres une permutation p de J1, nK et un entier i
de J1, nK. Cette fonction renverra, parmi les cases dŠindice strictement supérieur à i et de valeur strictement supérieure
à p[i], lŠindice de celle de valeur minimale. On suppose que cette fonction ne sera appelée que lorsquŠun tel indice
existe.

Question13 Écrire une fonction suivante prenant en paramètre une permutation p de J1, nK. Cette fonction
modifiera la permutation pour la transformer par la suivante dans l Šordre l exicographique. Lorsque la permutation
suivante existe, la fonction renverra la valeur True ; dans le cas contraire, elle renverra la valeur False sans modifier la
permutation.

Résolution

On cherche à présent à résoudre des jeux de KenKen. On propose dŠessayer de remplir ligne après ligne la grille
en commençant par attribuer à la première ligne, la première permutation des entiers de J1, nK dans lŠordre lexico-
graphique. On fait de même pour la seconde ligne, puis les suivantes, en veillant à vérifier à chaque étape que le
remplissage partiel de la grille est conforme aux contraintes du jeu : les zones portant sur les cases remplies doivent
voir leurs contraintes vérifiées et 2 mêmes entiers ne peuvent se trouver sur une même colonne. En cas dŠéchec, on
essaie la permutation suivante de la ligne faisant défaut. Si aucune des permutations ne convient, cŠest que lŠune
des lignes précédentes est en cause et on essaie alors la permutation suivante de la ligne qui précède celle faisant
défaut.

Question 14 Écrire une fonction récursive continue_remplissage qui, étant donné une grille dont les i premières
lignes sont intégralement remplies, la liste des listes de zones rangées par indice de ligne maximal de ses cases, et
lŠentier i, essaie tous les remplissages possibles des lignes suivant i jusquŠà aboutir à une solution. Cette fonction
modifiera la grille en la remplissant par la solution obtenue. La fonction renverra True si elle aboutit à un remplissage
valide et False sinon.

Question 15 Écrire une fonction resoudre prenant en paramètres la taille n dŠun jeu et la liste de ses zones. Cette
fonction retournera lŠunique solution au problème et None si elle ne lŠa pas trouvée.

Question 16 Décrire le pire des cas en termes de découpage des formes des zones pour cette stratégie de résolution.

Question 17 Écrire une fonction nb_solutions qui, étant donné la taille n dŠun jeu possiblement mal formé (en ce
sens quŠelle pourrait admettre plusieurs solutions) et la liste de ses zones, retourne le nombre de solutions respectant
les contraintes du jeu.

CPGE EPITA IPSA ESME 2025 – Épreuve Option Sciences Numériques | Page 3 sur 6

Gestion d’un site en ligne

On cherche à présent à élaborer la base de données d’un site internet proposant des grilles de KenKen. On choisit
de stocker les informations des comptes utilisateurs, la liste des grilles disponibles et les informations des temps de
résolution des grilles par les utilisateurs.

On répartit ces informations en 3 tables dont on présente des extraits ci-après. La première ligne représente les noms
des champs et les suivantes les enregistrements. La clé primaire de chaque table sera indiquée en première colonne.
Les clés étrangères seront soulignées.

Une première table utilisateurs permet de stocker les informations personnelles des utilisateurs :

idUtilisateur nom prenom surnom dateDeNaissance · · ·

...
...

...
...

...
...

42 Page Larry DeepMind 1973-03-26 · · ·

...
...

...
...

...
...

314 Harmon Elizabeth Beth 1948-11-02 · · ·

...
...

...
...

...
...

Une seconde table grilles permet de stocker les grilles disponibles pour les joueurs, en particulier leur taille et leur
niveau de difficulté.

idGrille taille difficulte · · ·

...
...

...
...

159 4 2 · · ·

...
...

...
...

Une troisième table parties permet de déterminer les temps de résolution des grilles par les joueurs. On stocke
l’identifiant idUtilisateur de l’utilisateur concerné dans u_idUtilisateur qui sera donc une clé étrangère ; de
même pour la clé étrangère g_idGrille permettant d’identifier la grille concernée. Le champ resolue contient 0
pour une grille non encore résolue et 1 sinon tandis que debut (respectivement fin) contient l’instant de début
(respectivement de fin) de résolution de la grille par l’utilisateur (exprimé en secondes écoulées depuis le 1er janvier
1970 à minuit). Enfin le champ note comporte un indice de satisfaction de la grille que fournit le joueur après avoir
résolu la grille. Les champs non remplis se verront attribuer la valeur NULL.

idPartie u_idUtilisateur g_idGrille resolue debut fin note

...
...

...
...

...
...

...

421 314 159 1 1735080872 1735081199 3

...
...

...
...

...
...

...

2718 42 159 0 1744461130 NULL NULL

...
...

...
...

...
...

...

Question 18 Écrire une requête SQL retournant le meilleur temps de résolution (en secondes) obtenu pour la grille

d’identifiant 159.

Question 19 Écrire une requête SQL qui donne la meilleure note attribuée à une grille par la joueuse « Elizabeth

Harmon ».

CPGE EPITA IPSA ESME 2025 – Épreuve Option Sciences Numériques | Page 4 sur 6

Question 20 Écrire une requête SQL donnant les surnoms et les temps de résolution des trois joueurs les plus rapides
parmi ceux ayant résolu la grille d’identifiant 421. On ordonnera les réponses par temps croissant de résolution de la
grille.

Question 21 Écrire une requête SQL donnant les noms, prénoms et surnoms des joueurs ayant donné la meilleure
note à une grille de difficulté 2 (plus une note est élevée, meilleure elle est).

CPGE EPITA IPSA ESME 2025 – Épreuve Option Sciences Numériques | Page 5 sur 6

