DEPITA IPSA E
CONCOURS

CPGE

EPITA - IPSA - ESME

1 SEUL ET UNIQUE CONCOURS
POUR VOUS PREPARER
A UNE MULTITUDE
DE METIERS

Samedi 12 avril 2025

OPTION SCIENCES NUMERIQUES
MPI

DUREE : 2 HEURES

Conditions particuliéres :

Calculatrice et documents interdits

Le sujet est composé d’un probléme et d'un questionnaire a choix multiples. Le questionnaire a choix multiples devra
étre inséré dans votre copie.

Les arbres de preuve demandés dans ce sujet devront utiliser les régles de la déduction naturelle listées en annexe.

Les fonctions a produire dans ce sujet devront étre rédigées en OCaml. Il est possible d’écrire des fonctions auxiliaires
non explicitement demandées a condition de les documenter et de les définir avant d’en faire usage. Seules les
primitives du langage OCaml ainsi que les fonctions des modules List, Array et Queue pourront étre utilisées sans
restrictions. La documentation de certaines de ces fonctions est rappelée en annexe.

Probleme — Pavage d’une surface avec des dominos

On considére une surface quadrillée composée de n rangées de p colonnes que I'on souhaite recouvrir avec des dalles
de taille 1 par 2 que nous appellerons dominos. Les dominos ne peuvent étre disposés que verticalement ou horizon-
talement. On fait de plus I'hypothése que certaines cases du quadrillage peuvent comporter un obstacle (symbolisé
par une croix) et ne sont donc pas a recouvrir.

L'objectif de ce probleme est de déterminer un pavage de la surface, c’est-a-dire un recouvrement intégral, avec des
dominos, des cases ne comportant pas d’obstacles.

Voici un exemple de surface de taille n = 3 par p = 5 comportant 3 obstacles :

On peut paver cette surface a I'aide de 6 dominos A, B, C, D, E et F de la facon suivante :

e Y Y 3
A C
- ~ 4 B M A
D F = <7 N
E F
\ A A A

CPGE EPITA IPSA ESME 2025 — Epreuve Option Sciences Numériques MP| | Page 1 sur 8

1 Dénombrement et déduction naturelle

Question 1 Montrer par un raisonnement en langue francaise, qu'il n'existe qu'un seul pavage complet de la surface
représentée ci-apres et dont on a numéroté les cases.

Question 2 Une surface quadrillée avec des obstacles qui comporterait un nombre pair de cases libres est-elle toujours
pavable ? En est-il de méme si la surface est sans obstacle ? On justifiera ses réponses.

Question 3 Considérons une surface sans obstacles de taille 2 par n et notons u,, le nombre de facons de paver cette
surface, montrer que Vn € N*| w10 = u,r1 + uy,. On précisera les valeurs de uq et us.

On considére a présent la surface suivante dont on a numéroté les cases sans obstacles :

Notons a la variable propositionnelle indiquant si un méme domino est placé sur les cases 0 et 1, b celle indiquant si
un méme domino est placé sur les cases 1 et 2 et c celle indiquant si un méme domino est placé sur les cases 2 et 3.

Question 4 Donner une formule propositionnelle 1, exprimée sous forme normale disjonctive, traduisant le fait que
la case numéro 1 doit étre recouverte par exactement un domino.

Question 5 Donner une formule propositionnelle @2, exprimée sous forme normale conjonctive, traduisant le fait que
la case numéro 2 doit étre recouverte par exactement un domino.

Question 6 Etablir un arbre de preuve pour le séquent ¢1,b F —a.
Question 7 Etablir un arbre de preuve pour le séquent @y, b F —c.

Question 8 On définit la formule propositionnelle ¢ 5: (ma AbAc)V (aA=bAc)V (aAbA-c).
Pourquoi faut-il que 3 soit satisfaite dans le cadre de notre probleme?

Question 9 Indiquer, au moyen d’'une table de vérité, ce que I'on peut dire du séquent : p3,bF a Ve

Question 10 A partir des séquents prouvés précédemment, construire un arbre de preuve du séquent ¢1, @2, 3 - —b.
Expliquer ce que cela traduit concernant la configuration des dominos pour le probléme.

Question 11 Existe-t'il un arbre de preuve du séquent 1, o, w3 = —a? On justifiera sa réponse.

2 Recherche d’un couplage maximum dans un graphe biparti

On fait I'hypothése, pour tout le reste du probléme, que les graphes manipulés sont connexes.

On rappelle qu'un graphe G = (5, A) est biparti s'il existe une partition de S en deux ensembles S; et Sy tels
que les arcs de A ont une de leurs extrémités dans Sy et I'autre dans S5. On rappelle également qu'un graphe est

bicolorable s'il est possible d'attribuer une couleur a chacun de ses sommets de facon a utiliser au plus 2 couleurs
différentes et que deux sommets adjacents n'aient jamais la méme couleur.

CPGE EPITA IPSA ESME 2025 — Epreuve Option Sciences Numériques MPl | Page 2 sur 8

Quitte a renuméroter les sommets des graphes considérés, on choisit de représenter les graphes bipartis par le type :
type b_graph =

{

nl : int;

n2 : int;

voisins : int list array
X

HH

ou nl est le cardinal de Sq, n2 celui de Sy et voisins est la représentation par listes d'adjacence du graphe.

Les sommets de S; étant alors renumérotés de 0 a n; — 1 et ceux de Sy de ny a ny + ny — 1. La renumérotation
des sommets sera représentée par un tableau de n; + no entiers de sorte que la case d'indice i contienne le nouveau
numéro du sommet 7.

Par exemple :

un graphe biparti une renumérotation possible

@/G @/6

CLAE T4
olRo olRo

Ainsi {n1=3; n2=3; voisins = [|[4];[3;4;5];[3];[1;2];[0;1]; (11113} pourrareprésenter le graphe de |'exemple

ci-dessus et [10;3;1;4;2;51] la renumérotation qui lui est associée.
On rappelle qu'un couplage d'un graphe est un ensemble d'arétes du graphe deux a deux non incidentes (c'est-a-dire

n'ayant pas de sommet en commun). Par exemple |'ensemble des arétes {1, 4} et {2, 3} est un couplage du graphe
biparti suivant :

7
CEAD

Le cardinal d'un couplage est le nombre d'arétes qui le composent. Un couplage d'un graphe est dit maximum
lorsqu'il n'existe pas de couplage du graphe dont le cardinal lui serait strictement supérieur.

On choisit de représenter les couplages par un tableau indexé par les sommets du graphe. Le contenu de la case
d'indice i contient le numéro du sommet avec lequel i est couplé, et -1 sinon.

Question 12 Donner le tableau représentant le couplage ci-dessus.

Question 13 Ecrire une fonction cardinal : int array -> int prenant en parametre un couplage et retournant
son cardinal.

CPGE EPITA IPSA ESME 2025 — Epreuve Option Sciences Numériques MPl | Page 3 sur 8

On rappelle qu'un sommet est libre vis-a-vis d'un couplage s'il n'est I'extrémité d’aucune aréte du couplage.

Le graphe d’augmentation associé a un couplage C d'un graphe biparti G est le graphe orienté obtenu a partir de
G en appliquant les transformations suivantes :

1. orientation des arétes :

— les arétes appartenant au couplage C sont orientées des sommets de S5 vers ceux de St ;

— les arétes n'appartenant pas au couplage C sont orientées des sommets de S; vers ceux de Ss;
2. ajout de sommets : on ajoute deux nouveaux sommets s et ¢, respectivement numérotés ni +ns et n; +ns+1;
3. ajout d’arcs :

— on ajoute pour chaque sommet x de S; et libre vis-a-vis de C', un arc allant de s vers z;

— on ajoute pour chaque sommet y de Sy et libre vis-a-vis de C, un arc allant de y vers t.

Les graphes d'augmentation seront également représentés par le type b_graph.
Question 14 Dessiner le graphe d'augmentation associé au couplage et au graphe de I'exemple précédent.

Question 15 Ecrire une fonction graphe_augmentation : b_graph —-> int array -> b_graph construisant le
graphe d’augmentation d'un graphe biparti et d'un couplage du graphe donnés. On prendra soin de retourner un
graphe indépendant de celui passé en paramétre.

On appelle chemin augmentant tout chemin du graphe d'augmentation menant de s a ¢.

Question 16 Ecrire une fonction chemin_augmentant : b_graph —-> int list prenant en paramétre le graphe
d'augmentation associé a un graphe et a un de ses couplages. Lorsqu'il existe un chemin menant de s a ¢, la fonction
renverra la liste des sommets rencontrés dans |'ordre de parcours du chemin (sans s et). Si un tel chemin n'existe
pas, la fonction renverra la liste vide.

Question 17 Pourquoi un chemin augmentant comporte-t-il toujours un nombre pair de sommets ?

Question 18 Ecrire une fonction augmenter_couplage : int array -> int list -> unit qui, étant donné
un couplage et un chemin augmentant de ce couplage, remplace le couplage passé en paramétre par un couplage de
cardinal strictement supérieur.

Question 19 Ecrire une fonction couplage_max : b_graph -> int array qui, étant donné un graphe biparti,
retourne un couplage maximum.

3 Retour au probléme de pavage

On considére le probleme de décision PAVABLE qui, a partir des dimensions d'une surface quadrillée et de la liste de
ses obstacles, indique si la surface peut ou non étre pavée.

Question 20 Le probléme PAVABLE est-il dans la classe NP 7 On justifiera sa réponse.

On choisit de numéroter de gauche a droite et de haut en bas I'ensemble des m cases sans obstacle par les entiers
consécutifs de 0 a m — 1. On représente |a surface par un graphe non orienté et non pondéré. L'ensemble des sommets
est I'ensemble des numéros des cases sans obstacles et on considere que deux sommets sont adjacents si et seulement
si les cases qu'ils représentent se touchent horizontalement ou verticalement. Les graphes seront représentés par leurs
listes d'adjacence au moyen du type int list array (la case ¢ contient la liste des voisins du sommet 4). En voici
un exemple :

Surface quadrillée numérotée Graphe représentant la surface

o | 1 OO
2 | 3 O—®

Le graphe sera alors représenté par le tableau [|[1];[0;2];[1;3];[2]11].

CPGE EPITA IPSA ESME 2025 — Epreuve Option Sciences Numériques MP! | Page 4 sur 8

Pour simplifier on fera I'hypothése, comme précisé dans la partie précédente, que I'on ne manipulera que des graphes
connexes.

Question 21 Montrer qu'un graphe non orienté quelconque est biparti si et seulement si il est bicolorable.
Question 22 Montrer que le graphe représentant une surface est toujours bicolorable.

Question 23 Ecrire une fonction creer_b_graph : int list array -> b_graph * int array prenant en pa-
rameétre un graphe biparti G représenté par listes d’adjacence. La fonction retournera une représentation de ce graphe

sous le type b_graph ainsi que la renumérotation adoptée pour I'ensemble de ses sommets.

Question 24 Expliquer comment résoudre le probléeme PAVABLE et indiquer les conclusions que |'on peut en tirer
concernant sa classe de complexité.

CPGE EPITA IPSA ESME 2025 — Epreuve Option Sciences Numériques MPl | Page 5 sur 8

Numéro de candidat :

Document a insérer dans votre copie d’examen

QCM - MPI

Dans ce questionnaire a choix multiples, chaque question comporte une ou plusieurs bonnes réponses.

Chaque réponse correcte fait gagner des points, mais chaque réponse fausse annule tous les points de la question.
Les questions peuvent-étre formulées au pluriel par commodité d’expression. Cela n'implique pas nécessairement
qu'elles admettent plusieurs réponses correctes.

On considére la fonction, écrite en langage C, suivante :

int mystere(int m, int n)

{
int t=1;
if (n>0)
{
t = mystere(m,n/2);
t = trt;
if (n%2==1)
t=m*t;
}
return t;
}

1. La fonction mystere :
O effectue un nombre linéaire d'appels récursifs en n quand n est une puissance de 2;
[0 effectue un nombre quadratique d'appels récursifs en n quand n est une puissance de 2;
[permet de calculer les puissances d'un nombre;
[0 permet de calculer le produit de deux nombres.

2. L'ensemble des langages réguliers est stable :
O par intersection finie;
[0 par union finie;
O par union infinie;
[] par passage au complémentaire.

3. L'algorithme de Kosaraju permet de :
O déterminer les composantes fortement connexes d'un graphe orienté;
(1 déterminer un plus court chemin entre tout couple de sommets d'un graphe orienté;
[0 déterminer un arbre couvrant de poids minimal d'un graphe non orienté pondéré;
O déterminer un automate fini acceptant le langage dénoté par une expression réguliere.

4. Parmi les algorithmes suivants, indiquer ceux opérant sur des graphes.
O I'algorithme de Kruskal;
O I'algorithme de Boyer-Moore ;
O I'algorithme de Quine;
O I'algorithme de Dijkstra.

5. La formule propositionnelle (ma VbV e)A(aV-bVe)A(aVbV—c):
[0 est sous forme normale conjonctive;

est sous forme normale disjonctive ;

est satisfiable;

est équivalente a (a Ab)V (aAc)V (bAc).

0ooo

CPGE EPITA IPSA ESME 2025 — Epreuve Option Sciences Numériques MPl | Page 6 sur 8

Annexe A — regles de la déduction naturelle

On se donne les régles suivantes de la déduction naturelle ot ¢, @1, @2 et ¥ désignent des formules logiques et T un
ensemble de formules logiques. De plus T désigne la tautologie et L |'antilogie (ou contradiction).

Axiome | Affaiblissement

'k
2 (aff)
FolFe | TVAFRe
Elimination Introduction
'+ 1
Tet L — (Le — (T
FFw(: T (9
I'F o1 Ao ' o1 Ap o1 Tk
A ——— (A\e) —————— (A)
FF(pl FFLpQ FF(pl/\(pg
F'FeiVes TopibFEY Tk 'k I'F @9
% (Ve) | =/ — (Vi)
e+ L'Ep1Vs T'Ep1Vps
'y The—9y Lok
E (~+) PP ()
'y 'p—9y
) FF—\QD() Lok L)
NS ‘ Th-p

On s'autorisera également I'emploi des deux régles suivantes sans en fournir d’arbre de preuve :

I'F =1 V=

I'F=(p1 A pa) (am)

].—‘l__|s01

I'F (o1 V)

Annexe B — extraits de la documentation OCaml

A =
P2 (Varm)

Extraits concernant le module Array pour manipuler des tableaux

val length : 'a array -> int

I Return the length (number of elements) of the given array.

val make : int -> 'a -> 'a array

make n x returns a fresh array of length n, initialized with x. All the elements of this new array are initially
physically equal to x (in the sense of the == predicate). Consequently, if x is mutable, it is shared among all
elements of the array, and modifying x through one of the array entries will modify all other entries at the same

time.

val copy : 'a array -> 'a array

I copy a returns a copy of a, that is, a fresh array containing the same elements as a.

val iter :
It is equivalent to £ a.(0); £ a.(1);
val map :

[I £a.(0); £ a.(1);

val for_all :

for_all f [|al;
That is, it returns (£ al) && (f a2) && ...

('a => unit) -> 'a array -> unit

('a -> 'b) -> 'a array -> 'b array

iter f a applies function £ in turn to all the elements of a.
.; £ a.(length a - 1); O.

('a => bool) -> 'a array -> bool

&& (f an).

map f a applies function £ to all the elements of a, and builds an array with the results returned by £ :
.; £ a.(length a - 1) |].

.; anl] checks if all elements of the array satisfy the predicate £.

1. Sources : https://ocaml.org/manual/5.2/api/Array.html, https://ocaml.org/manual/5.2/api/List.html

et https://ocaml.org/manual/5.2/api/Queue.html

CPGE EPITA IPSA ESME 2025 — Epreuve Option Sciences Numériques MPI

| Page 7 sur 8

val exists : ('a -> bool) -> 'a array -> bool
exists £ [lal; ...; anl] checks if at least one element of the array satisfies the predicate f.
That is, it returns (£ a1) || (£ a2) || ... || (£ an).

Extraits du module List pour manipuler des listes

val length : 'a list -> int
I Return the length (number of elements) of the given list.

val hd : 'a list -> 'a
I Return the first element of the given list.

val t1 : 'a list -> 'a list
I Return the given list without its first element.

val rev : 'a list -> 'a list
I List reversal.

val iter : ('a -> unit) -> 'a list -> unit
iter £ [al; ...; an] applies function f in turn to [al; ...; an]. It is equivalent tof al; f a2; ...; f
an.

val map : ('a -> 'b) -> 'a list -> 'b list
map £ [al; ...; an] applies function £ to al, ..., an, and builds the list [f al; ...; f an] with the
results returned by £.

val fold_left : ('acc -> 'a -> 'acc) -> 'acc -> 'a list -> 'acc

| fold_1eft £ init [b1; ...; bnlis£ (... (£ (£ init b1) b2) ...) bn.

val for_all : ('a -> bool) -> 'a list -> bool

for_all f [al; ...; anl] checks if all elements of the list satisfy the predicate f.

That is, it returns (f al) && (f a2) && ... && (£ an) for a non-empty list and true if the list is empty.

val exists : ('a -> bool) -> 'a list -> bool

exists f [al; ...; an] checks if at least one element of the list satisfies the predicate f.
That is, it returns (f al) || (f a2) || ... || (£ an) for a non-empty list and false if the list is empty.
val mem : 'a -> 'a list -> bool

Imem a set is true if and only if a is equal to an element of set.

Extraits concernant le module Queue pour manipuler des files

val create : unit -> 'a t
I Return a new queue, initially empty.

val push : 'a -> 'a t -> unit
I push x q adds the element x at the end of the queue q.

val pop : 'at -> 'a
I pop q removes and returns the first element in queue q, or raises Queue .Empty if the queue is empty.

val is_empty : 'a t —> bool
I Return true if the given queue is empty, false otherwise.

Fin du sujet

CPGE EPITA IPSA ESME 2025 — Epreuve Option Sciences Numériques MP! | Page 8 sur 8

