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OPTION SCIENCES NUMÉRIQUES 
MPI

DURÉE : 2 HEURES 

Conditions particulières : 

Calculatrice et documents interdits 

Indiquez votre code candidat SCEI sur le QCM 



Le sujet est composé dŠun problème et dŠun questionnaire à choix multiples. Le questionnaire à choix multiples devra
être inséré dans votre copie.

Les arbres de preuve demandés dans ce sujet devront utiliser les règles de la déduction naturelle listées en annexe.

Les fonctions à produire dans ce sujet devront être rédigées en OCaml. Il est possible dŠécrire des fonctions auxiliaires
non explicitement demandées à condition de les documenter et de les déĄnir avant dŠen faire usage. Seules les
primitives du langage OCaml ainsi que les fonctions des modules List, Array et Queue pourront être utilisées sans
restrictions. La documentation de certaines de ces fonctions est rappelée en annexe.

Problème – Pavage d’une surface avec des dominos

On considère une surface quadrillée composée de n rangées de p colonnes que l’on souhaite recouvrir avec des dalles
de taille 1 par 2 que nous appellerons dominos. Les dominos ne peuvent être disposés que verticalement ou horizon-
talement. On fait de plus l’hypothèse que certaines cases du quadrillage peuvent comporter un obstacle (symbolisé
par une croix) et ne sont donc pas à recouvrir.

L’objectif de ce problème est de déterminer un pavage de la surface, c’est-à-dire un recouvrement intégral, avec des
dominos, des cases ne comportant pas d’obstacles.

Voici un exemple de surface de taille n = 3 par p = 5 comportant 3 obstacles :

On peut paver cette surface à l’aide de 6 dominos A, B, C, D, E et F de la façon suivante :

A

B

C

D

E F
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1 Dénombrement et déduction naturelle

Question 1 Montrer par un raisonnement en langue française, qu’il n’existe qu’un seul pavage complet de la surface
représentée ci-après et dont on a numéroté les cases.

0

1 2 3

4 5

Question 2 Une surface quadrillée avec des obstacles qui comporterait un nombre pair de cases libres est-elle toujours
pavable ? En est-il de même si la surface est sans obstacle ? On justifiera ses réponses.

Question 3 Considérons une surface sans obstacles de taille 2 par n et notons un le nombre de façons de paver cette
surface, montrer que ∀n ∈ N

⋆, un+2 = un+1 + un. On précisera les valeurs de u1 et u2.

On considère à présent la surface suivante dont on a numéroté les cases sans obstacles :

0 1

2 3

Notons a la variable propositionnelle indiquant si un même domino est placé sur les cases 0 et 1, b celle indiquant si
un même domino est placé sur les cases 1 et 2 et c celle indiquant si un même domino est placé sur les cases 2 et 3.

Question 4 Donner une formule propositionnelle ϕ1, exprimée sous forme normale disjonctive, traduisant le fait que
la case numéro 1 doit être recouverte par exactement un domino.

Question 5 Donner une formule propositionnelle ϕ2, exprimée sous forme normale conjonctive, traduisant le fait que
la case numéro 2 doit être recouverte par exactement un domino.

Question 6 Établir un arbre de preuve pour le séquent ϕ1, b ⊢ ¬a.

Question 7 Établir un arbre de preuve pour le séquent ϕ2, b ⊢ ¬c.

Question 8 On définit la formule propositionnelle ϕ 3 :  (¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) ∨ (a ∧ b ∧ ¬c).
Pourquoi faut-il que ϕ3 soit satisfaite dans le cadre de notre problème ?

Question 9 Indiquer, au moyen d’une table de vérité, ce que l’on peut dire du séquent : ϕ3, b ⊢ a ∨ c.

Question 10 À partir des séquents prouvés précédemment, construire un arbre de preuve du séquent ϕ1, ϕ2, ϕ3 ⊢ ¬b. 
Expliquer ce que cela traduit concernant la configuration des dominos pour le problème.

Question 11 Existe-t’il un arbre de preuve du séquent ϕ1, ϕ2, ϕ3 ⊢ ¬a ? On justifiera sa réponse.

2 Recherche d’un couplage maximum dans un graphe biparti

On fait l’hypothèse, pour tout le reste du problème, que les graphes manipulés sont connexes.

On rappelle qu’un graphe G = (S, A) est biparti s’il existe une partition de S en deux ensembles S1 et S2 tels 
que les arcs de A ont une de leurs extrémités dans S1 et l’autre dans S2. On rappelle également qu’un graphe est 
bicolorable s’il est possible d’attribuer une couleur à chacun de ses sommets de façon à utiliser au plus 2 couleurs 
différentes et que deux sommets adjacents n’aient jamais la même couleur.
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Quitte à renuméroter les sommets des graphes considérés, on choisit de représenter les graphes bipartis par le type :
type b_graph =

{

n1 : int;

n2 : int;

voisins : int list array

}

;;

où n1 est le cardinal de S1, n2 celui de S2 et voisins est la représentation par listes d’adjacence du graphe.
Les sommets de S1 étant alors renumérotés de 0 à n1 − 1 et ceux de S2 de n1 à n1 + n2 − 1. La renumérotation
des sommets sera représentée par un tableau de n1 + n2 entiers de sorte que la case d’indice i contienne le nouveau
numéro du sommet i.

Par exemple :

un graphe biparti

0

2

4

1

3

5

une renumérotation possible

0

1

2

3

4

5

Ainsi {n1=3; n2=3; voisins = [|[4];[3;4;5];[3];[1;2];[0;1];[1]|]} pourra représenter le graphe de l’exemple
ci-dessus et [|0;3;1;4;2;5|] la renumérotation qui lui est associée.

On rappelle qu’un couplage d’un graphe est un ensemble d’arêtes du graphe deux à deux non incidentes (c’est-à-dire
n’ayant pas de sommet en commun). Par exemple l’ensemble des arêtes {1, 4} et {2, 3} est un couplage du graphe
biparti suivant :

0

1

2

3

4

5

Le cardinal d’un couplage est le nombre d’arêtes qui le composent. Un couplage d’un graphe est dit maximum 
lorsqu’il n’existe pas de couplage du graphe dont le cardinal lui serait strictement supérieur.

On choisit de représenter les couplages par un tableau indexé par les sommets du graphe. Le contenu de la case 

d’indice i contient le numéro du sommet avec lequel i est couplé, et -1 sinon.

Question 12 Donner le tableau représentant le couplage ci-dessus.

Question 13 Écrire une fonction cardinal : int array -> int prenant en paramètre un couplage et retournant 
son cardinal.
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On rappelle qu’un sommet est libre vis-à-vis d’un couplage s’il n’est l’extrémité d’aucune arête du couplage.

Le graphe d’augmentation associé à un couplage C d’un graphe biparti G est le graphe orienté obtenu à partir de
G en appliquant les transformations suivantes :

1. orientation des arêtes :

— les arêtes appartenant au couplage C sont orientées des sommets de S2 vers ceux de S1 ;

— les arêtes n’appartenant pas au couplage C sont orientées des sommets de S1 vers ceux de S2 ;

2. ajout de sommets : on ajoute deux nouveaux sommets s et t, respectivement numérotés n1 +n2 et n1 +n2 +1 ;

3. ajout dŠarcs :

— on ajoute pour chaque sommet x de S1 et libre vis-à-vis de C, un arc allant de s vers x ;

— on ajoute pour chaque sommet y de S2 et libre vis-à-vis de C, un arc allant de y vers t.

Les graphes d’augmentation seront également représentés par le type b_graph.

Question 14 Dessiner le graphe d’augmentation associé au couplage et au graphe de l’exemple précédent.

Question 15 Écrire une fonction graphe_augmentation : b_graph -> int array -> b_graph construisant le
graphe d’augmentation d’un graphe biparti et d’un couplage du graphe donnés. On prendra soin de retourner un
graphe indépendant de celui passé en paramètre.

On appelle chemin augmentant tout chemin du graphe d’augmentation menant de s à t.

Question 16 Écrire une fonction chemin_augmentant : b_graph -> int list prenant en paramètre le graphe
d’augmentation associé à un graphe et à un de ses couplages. Lorsqu’il existe un chemin menant de s à t, la fonction
renverra la liste des sommets rencontrés dans l’ordre de parcours du chemin (sans s et t). Si un tel chemin n’existe
pas, la fonction renverra la liste vide.

Question 17 Pourquoi un chemin augmentant comporte-t-il toujours un nombre pair de sommets ?

Question 18 Écrire une fonction augmenter_couplage : int array -> int list -> unit qui, étant donné
un couplage et un chemin augmentant de ce couplage, remplace le couplage passé en paramètre par un couplage de
cardinal strictement supérieur.

Question 19 Écrire une fonction couplage_max : b_graph -> int array qui, étant donné un graphe biparti,
retourne un couplage maximum.

3 Retour au problème de pavage

On considère le problème de décision Pavable qui, à partir des dimensions d’une surface quadrillée et de la liste de
ses obstacles, indique si la surface peut ou non être pavée.

Question 20 Le problème Pavable est-il dans la classe NP ? On justifiera sa réponse.

On choisit de numéroter de gauche à droite et de haut en bas l’ensemble des m cases sans obstacle par les entiers
consécutifs de 0 à m−1. On représente la surface par un graphe non orienté et non pondéré. L’ensemble des sommets
est l’ensemble des numéros des cases sans obstacles et on considère que deux sommets sont adjacents si et seulement
si les cases qu’ils représentent se touchent horizontalement ou verticalement. Les graphes seront représentés par leurs
listes d’adjacence au moyen du type int list array (la case i contient la liste des voisins du sommet i). En voici
un exemple :

Surface quadrillée numérotée

0 1

2 3

Graphe représentant la surface

0 1

2 3

Le graphe sera alors représenté par le tableau [|[1];[0;2];[1;3];[2]|].
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Pour simplifier on fera l’hypothèse, comme précisé dans la partie précédente, que l’on ne manipulera que des graphes
connexes.

Question 21 Montrer qu’un graphe non orienté quelconque est biparti si et seulement si il est bicolorable.

Question 22 Montrer que le graphe représentant une surface est toujours bicolorable.

Question 23 Écrire une fonction creer_b_graph : int list array -> b_graph * int array prenant en pa-
ramètre un graphe biparti G représenté par listes d’adjacence. La fonction retournera une représentation de ce graphe
sous le type b_graph ainsi que la renumérotation adoptée pour l’ensemble de ses sommets.

Question 24 Expliquer comment résoudre le problème Pavable et indiquer les conclusions que l’on peut en tirer
concernant sa classe de complexité.
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QCM – MPI
Numéro de candidat :
Document à insérer dans votre copie d’examen

Dans ce questionnaire à choix multiples, chaque question comporte une ou plusieurs bonnes réponses.
Chaque réponse correcte fait gagner des points, mais chaque réponse fausse annule tous les points de la question.
Les questions peuvent-être formulées au pluriel par commodité dŠexpression. Cela nŠimplique pas nécessairement
quŠelles admettent plusieurs réponses correctes.

On considère la fonction, écrite en langage C, suivante :

int mystere(int m, int n)

{

int t=1;

if (n>0)

{

t = mystere(m,n/2);

t = t*t;

if (n%2==1)

t=m*t;

}

return t;

}

1. La fonction mystere :
□ effectue un nombre linéaire d’appels récursifs en n quand n est une puissance de 2 ;
□ effectue un nombre quadratique d’appels récursifs en n quand n est une puissance de 2 ;
□ permet de calculer les puissances d’un nombre ;
□ permet de calculer le produit de deux nombres.

2. L’ensemble des langages réguliers est stable :
□ par intersection finie ;
□ par union finie ;
□ par union infinie ;
□ par passage au complémentaire.

3. L’algorithme de Kosaraju permet de :
□ déterminer les composantes fortement connexes d’un graphe orienté ;
□ déterminer un plus court chemin entre tout couple de sommets d’un graphe orienté ;
□ déterminer un arbre couvrant de poids minimal d’un graphe non orienté pondéré ;
□ déterminer un automate fini acceptant le langage dénoté par une expression régulière.

4. Parmi les algorithmes suivants, indiquer ceux opérant sur des graphes.
□ l’algorithme de Kruskal ;
□ l’algorithme de Boyer-Moore ;
□ l’algorithme de Quine ;
□ l’algorithme de Dijkstra.

5. La formule propositionnelle (¬a ∨ b ∨ c) ∧ (a ∨ ¬b ∨ c) ∧ (a ∨ b ∨ ¬c) :
□ est sous forme normale conjonctive ;
□ est sous forme normale disjonctive ;
□ est satisfiable ;
□ est équivalente à (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c).
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Annexe A – règles de la déduction naturelle

On se donne les règles suivantes de la déduction naturelle où ϕ, ϕ1, ϕ2 et ψ désignent des formules logiques et Γ un
ensemble de formules logiques. De plus ⊤ désigne la tautologie et ⊥ l’antilogie (ou contradiction).

Axiome Affaiblissement

Γ, ϕ ⊢ ϕ

Γ ⊢ ϕ
(aff)

Γ,∆ ⊢ ϕ

Élimination Introduction

⊤ et ⊥
Γ ⊢ ⊥

(⊥e)
Γ ⊢ ϕ

(⊤i)
Γ ⊢ ⊤

∧
Γ ⊢ ϕ1 ∧ ϕ2

(∧e)
Γ ⊢ ϕ1

Γ ⊢ ϕ1 ∧ ϕ2
(∧e)

Γ ⊢ ϕ2

Γ ⊢ ϕ1 Γ ⊢ ϕ2
(∧i)

Γ ⊢ ϕ1 ∧ ϕ2

∨
Γ ⊢ ϕ1 ∨ ϕ2 Γ, ϕ1 ⊢ ψ Γ, ϕ2 ⊢ ψ

(∨e)
Γ ⊢ ψ

Γ ⊢ ϕ1
(∨i)

Γ ⊢ ϕ1 ∨ ϕ2

Γ ⊢ ϕ2
(∨i)

Γ ⊢ ϕ1 ∨ ϕ2

→
Γ ⊢ ϕ Γ ⊢ ϕ → ψ

(→e)
Γ ⊢ ψ

Γ, ϕ ⊢ ψ
(→i)

Γ ⊢ ϕ → ψ

¬
Γ ⊢ ϕ Γ ⊢ ¬ϕ

(¬e)
Γ ⊢ ⊥

Γ, ϕ ⊢ ⊥
(¬i)

Γ ⊢ ¬ϕ

On s’autorisera également l’emploi des deux règles suivantes sans en fournir d’arbre de preuve :

Γ ⊢ ¬ϕ1 ∨ ¬ϕ2
(∧dm)

Γ ⊢ ¬(ϕ1 ∧ ϕ2)

Γ ⊢ ¬ϕ1 ∧ ¬ϕ2
(∨dm)

Γ ⊢ ¬(ϕ1 ∨ ϕ2)

Annexe B – extraits de la documentation OCaml 1

Extraits concernant le module Array pour manipuler des tableaux

val length : 'a array -> int

Return the length (number of elements) of the given array.

val make : int -> 'a -> 'a array

make n x returns a fresh array of length n, initialized with x. All the elements of this new array are initially
physically equal to x (in the sense of the == predicate). Consequently, if x is mutable, it is shared among all
elements of the array, and modifying x through one of the array entries will modify all other entries at the same
time.

val copy : 'a array -> 'a array

copy a returns a copy of a, that is, a fresh array containing the same elements as a.

val iter : ('a -> unit) -> 'a array -> unit

iter f a applies function f in turn to all the elements of a.
It is equivalent to f a.(0); f a.(1); ...; f a.(length a - 1); ().

val map : ('a -> 'b) -> 'a array -> 'b array

map f a applies function f to all the elements of a, and builds an array with the results returned by f :
[| f a.(0); f a.(1); ...; f a.(length a - 1) |].

val for_all : ('a -> bool) -> 'a array -> bool

for_all f [|a1; ...; an|] checks if all elements of the array satisfy the predicate f.
That is, it returns (f a1) && (f a2) && ... && (f an).

1. Sources : https://ocaml.org/manual/5.2/api/Array.html, https://ocaml.org/manual/5.2/api/List.html

et https://ocaml.org/manual/5.2/api/Queue.html
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val exists : ('a -> bool) -> 'a array -> bool

exists f [|a1; ...; an|] checks if at least one element of the array satisĄes the predicate f.
That is, it returns (f a1) || (f a2) || ... || (f an).

Extraits du module List pour manipuler des listes

val length : 'a list -> int

Return the length (number of elements) of the given list.

val hd : 'a list -> 'a

Return the Ąrst element of the given list.

val tl : 'a list -> 'a list

Return the given list without its Ąrst element.

val rev : 'a list -> 'a list

List reversal.

val iter : ('a -> unit) -> 'a list -> unit

iter f [a1; ...; an] applies function f in turn to [a1; ...; an]. It is equivalent to f a1; f a2; ...; f

an.

val map : ('a -> 'b) -> 'a list -> 'b list

map f [a1; ...; an] applies function f to a1, ..., an, and builds the list [f a1; ...; f an] with the
results returned by f.

val fold_left : ('acc -> 'a -> 'acc) -> 'acc -> 'a list -> 'acc

fold_left f init [b1; ...; bn] is f (... (f (f init b1) b2) ...) bn.

val for_all : ('a -> bool) -> 'a list -> bool

for_all f [a1; ...; an] checks if all elements of the list satisfy the predicate f.
That is, it returns (f a1) && (f a2) && ... && (f an) for a non-empty list and true if the list is empty.

val exists : ('a -> bool) -> 'a list -> bool

exists f [a1; ...; an] checks if at least one element of the list satisĄes the predicate f.
That is, it returns (f a1) || (f a2) || ... || (f an) for a non-empty list and false if the list is empty.

val mem : 'a -> 'a list -> bool

mem a set is true if and only if a is equal to an element of set.

Extraits concernant le module Queue pour manipuler des files

val create : unit -> 'a t

Return a new queue, initially empty.

val push : 'a -> 'a t -> unit

push x q adds the element x at the end of the queue q.

val pop : 'a t -> 'a

pop q removes and returns the Ąrst element in queue q, or raises Queue.Empty if the queue is empty.

val is_empty : 'a t -> bool

Return true if the given queue is empty, false otherwise.

Fin du sujet
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