Concours CPGE EPITA-IPSA-ESME
2025

Corrigé de I'épreuve de Sciences du numérique MPI

Le sujet est composé d'un probléme et d’'un questionnaire a choix multiples. Le questionnaire a choix multiples devra
étre inséré dans votre copie.

Les arbres de preuve demandés dans ce sujet devront utiliser les régles de la déduction naturelle listées en annexe.

Les fonctions a produire dans ce sujet devront étre rédigées en OCaml. Il est possible d’écrire des fonctions auxiliaires
non explicitement demandées a condition de les documenter et de les définir avant d’en faire usage. Seules les
primitives du langage OCaml ainsi que les fonctions des modules List, Array et Queue pourront étre utilisées sans
restrictions. La documentation de certaines de ces fonctions est rappelée en annexe.

Probleme — Pavage d’une surface avec des dominos

On considére une surface quadrillée composée de n rangées de p colonnes que I'on souhaite recouvrir avec des dalles
de taille 1 par 2 que nous appellerons dominos. Les dominos ne peuvent étre disposés que verticalement ou horizon-
talement. On fait de plus I'hypothése que certaines cases du quadrillage peuvent comporter un obstacle (symbolisé
par une croix) et ne sont donc pas a recouvrir.

L'objectif de ce probleme est de déterminer un pavage de la surface, c’est-a-dire un recouvrement intégral, avec des
dominos, des cases ne comportant pas d’obstacles.

Voici un exemple de surface de taille n = 3 par p = 5 comportant 3 obstacles :

On peut paver cette surface a I'aide de 6 dominos A, B, C, D, E et F de la facon suivante :

- Y Y N
A C
- S 4 B M y
D F - <7 ~
E F
\ A A Y,

page 1 sur 12

1 Dénombrement et déduction naturelle

Question 1 Montrer par un raisonnement en langue francaise, qu'il n'existe qu'un seul pavage complet de la surface
représentée ci-apres et dont on a numéroté les cases.

Pour paver la case 0, il est nécessaire de mettre un domino recouvrant les cases 0 et 2. Il devient alors nécessaire de
recouvrir d’'un domino les cases 1 et 4 et d'un second les cases 3 et 5. |l n'y a donc qu'un seul pavage complet pour
cette surface.

Question 2 Une surface quadrillée avec des obstacles qui comporterait un nombre pair de cases libres est-elle toujours
pavable ? En est-il de méme si la surface est sans obstacle 7 On justifiera ses réponses.

Une surface quadrillée a 2n cases libres n'est pas toujours pavable, prenons I'exemple de la surface suivante pour
n>1:

2 rangées

n + 1 colonnes

Cette configuration comporte 2(n + 1) — 2 = 2n cases libres mais n'est pas pavable car la case supérieure gauche ne
peut pas étre recouverte par un domino en raison des obstacles.

En revanche, une surface sans obstacles ayant un nombre pair de cases est toujours pavable. En effet, le nombre de
rangées ou le nombre de colonnes est nécessairement pair, considérons, quitte a tourner la surface de 90 degrés que
le nombre de rangées soit pair. Il suffit alors d’empiler verticalement les dominos sur chaque colonne pour obtenir un
pavage.

Question 3 Considérons une surface sans obstacles de taille 2 par n et notons u,, le nombre de facons de paver cette
surface, montrer que Vn € N*, wu, 19 = upy1 + upn. On précisera les valeurs de u; et us.

En placant un premier domino verticalement tout a gauche, il reste u,,11 facons de paver les 2(n+1) cases restantes :

y)

2 rangées

n + 2 colonnes

L'autre facon de paver la premiere colonne consiste a placer 2 dominos horizontaux |'un en dessous de |'autre :

Yy)

2 rangées [>

V..

N 2
n + 2 colonnes

Il reste alors u,, facons de paver les 2n cases restantes. On en déduit que Vn € N*| w10 = upi1 + up.
Enfin, on a u; = 1 et us = 2 (en plagant 2 dominos verticalement ou horizontalement).

page 2 sur 12

On considére a présent la surface suivante dont on a numéroté les cases sans obstacles :

Notons a la variable propositionnelle indiquant si un méme domino est placé sur les cases 0 et 1, b celle indiquant si
un méme domino est placé sur les cases 1 et 2 et c celle indiquant si un méme domino est placé sur les cases 2 et 3.

Question 4 Donner une formule propositionnelle 1, exprimée sous forme normale disjonctive, traduisant le fait que
la case numéro 1 doit étre recouverte par exactement un domino.

w1 = (aA-b)V (-a Ab)

Question 5 Donner une formule propositionnelle @2, exprimée sous forme normale conjonctive, traduisant le fait que
la case numéro 2 doit étre recouverte par exactement un domino.

w2 =-((=bA=c)V(bAec)=(bVc)A(mbV —e))

Question 6 Etablir un arbre de preuve pour le séquent ¢1,b F —a.

(ax)

a
(ax) p1,b,a A =b,at-a A —b A
ax e

p1,b,a AN —b,at-b <p1,b,a/\—|b,al—ﬂb()
(a%) <p1,b,a/\—|b,a|—J_() p1,0,ma ANbDFE —a ADb
ax —

w1, 1 v1,b,a A =bF —a p1,b,7a AbF —a

e ax)

(
(Ae)

(Ve)

p1,bF —a

Question 7 Etablir un arbre de preuve pour le séquent @9, b F —c.

(ax)

pa,b,cE (bVe) A(=bV —c)

— (ax) ——— (ax Ne
p2,b,ckb pa,b,ckc A p2,b,cF—=bV —c (Aam)
p2,b,cEbAC w2,b,cE=(bAc)
pa2,b,ckH L me)
p2,bF —c o)

Question 8 On définit la formule propositionnelle w3 : (ma AbAc)V (aA—bAc)V (aANbA=c).
Pourquoi faut-il que 3 soit satisfaite dans le cadre de notre probléme ?

On cherche a paver 4 cases, il faut donc pour cela utiliser exactement 2 dominos, ce que décrit la contrainte 3.

Question 9 Indiquer, au moyen d’une table de vérité, ce que I'on peut dire du séquent : p3,bF a V.

Dressons la table de vérité de @3 et indiquons celle de w3 Ab = a V c.

w3 Ab | a

o

p3ANb=aVc

SN TEYYe
ST he
IRV, I | R

SN STT e

M < S

N < <
SRS

Deés lors o3 A b = a V c est une tautologie et il existe donc un arbre de preuve pour le séquent : p3,bF a V c.

page 3 sur 12

Question 10 A partir des séquents prouvés précédemment, construire un arbre de preuve du séquent o1, @a, 3 - —b.
Expliquer ce que cela traduit concernant la configuration des dominos pour le probléme.

pLbFa o pbF e o
1,2, 03,0 —a $1, P2, p3,b = —c (A
w3,bFaVe (aff) ®1,92,p3,bF —a A —c (Vam)
©1,p2,p3,bFaVe ©1, 2, 93,0 =(aVe) (=)
01,92, 93, b L (=) ‘

¥1,¥P2,¥3)
On en déduit que les solutions du probléme n’ont pas de domino a cheval sur les cases 1 et 2.
Question 11 Existe-t'il un arbre de preuve du séquent @1, 2, 3 F —a? On justifiera sa réponse.

On remarque que la formule 1 A w3 A 3 = —a n'est pas une tautologie car elle n'est pas vérifiée pour la valuation
(a,b,¢) = (V, F,V) donc il ne peut pas exister d'arbre de preuve pour le séquent @1, 2, 3 - —a.

2 Recherche d’un couplage maximum dans un graphe biparti

On fait I'hypothese, pour tout le reste du probléme, que les graphes manipulés sont connexes.

On rappelle qu'un graphe G = (5, A) est biparti s'il existe une partition de S en deux ensembles S; et Sy tels
que les arcs de A ont une de leurs extrémités dans S; et I'autre dans S3. On rappelle également qu'un graphe est
bicolorable s'il est possible d’attribuer une couleur a chacun de ses sommets de facon a utiliser au plus 2 couleurs

différentes et que deux sommets adjacents n’aient jamais la méme couleur.

Quitte a renuméroter les sommets des graphes considérés, on choisit de représenter les graphes bipartis par le type :
type b_graph =

{

nl : int;

n2 : int;

voisins : int list array
X

HH

ol nl est le cardinal de Si, n2 celui de S5 et voisins est la représentation par listes d'adjacence du graphe.

Les sommets de S; étant alors renumérotés de 0 a n; — 1 et ceux de Sy de ny a ny + ny — 1. La renumérotation
des sommets sera représentée par un tableau de n; + no entiers de sorte que la case d'indice ¢ contienne le nouveau
numéro du sommet 1.

Par exemple :

un graphe biparti une renumérotation possible

@/G @/6

CLAE CEA
olRo @

Ainsi {n1=3; n2=3; voisins = [|[4];[3;4;5];[3]1;[1;2];[0;1];[1]11]1} pourrareprésenter le graphe de I'exemple
ci-dessus et [10;3;1;4;2;51] la renumérotation qui lui est associée.

page 4 sur 12

On rappelle qu'un couplage d'un graphe est un ensemble d'arétes du graphe deux a deux non incidentes (c'est-a-dire
n'ayant pas de sommet en commun). Par exemple |'ensemble des arétes {1, 4} et {2, 3} est un couplage du graphe
biparti suivant :

Le cardinal d'un couplage est le nombre d'arétes qui le composent. Un couplage d’'un graphe est dit maximum
lorsqu'il n'existe pas de couplage du graphe dont le cardinal lui serait strictement supérieur.

On choisit de représenter les couplages par un tableau indexé par les sommets du graphe. Le contenu de la case
d'indice ¢ contient le numéro du sommet avec lequel ¢ est couplé, et -1 sinon.

Question 12 Donner le tableau représentant le couplage ci-dessus.
[1-1;4;3;2;1;-111

Question 13 Ecrire une fonction cardinal : int array -> int prenant en paramétre un couplage et retournant
son cardinal.

let cardinal c =
let nb = ref 0 in
for i=0 to (Array.length c)-1 do
if c.(i)>(-1) then incr nb
done;
Inb/2

55
On rappelle qu'un sommet est libre vis-a-vis d'un couplage s'il n'est I'extrémité d'aucune aréte du couplage.

Le graphe d’augmentation associé a un couplage C d'un graphe biparti G est le graphe orienté obtenu a partir de
G en appliquant les transformations suivantes :

1. orientation des arétes :
— les arétes appartenant au couplage C sont orientées des sommets de S5 vers ceux de Sy ;

— les arétes n'appartenant pas au couplage C' sont orientées des sommets de S; vers ceux de Ss;
2. ajout de sommets : on ajoute deux nouveaux sommets s et t, respectivement numérotés ni +no et ny +no+1;

3. ajout d’arcs :
— on ajoute pour chaque sommet = de S et libre vis-a-vis de C, un arc allant de s vers z;
— on ajoute pour chaque sommet y de Sy et libre vis-a-vis de C, un arc allant de y vers ¢.

Les graphes d’augmentation seront également représentés par le type b_graph.

Question 14 Dessiner le graphe d’augmentation associé au couplage et au graphe de I'exemple précédent.

0/6

& GRD O
ofho

page 5 sur 12

Question 15 Ecrire une fonction graphe_augmentation : b_graph -> int array -> b_graph construisant le

graphe d’augmentation d'un graphe biparti et d'un couplage du graphe donnés. On prendra soin de retourner un
graphe indépendant de celui passé en parametre.

let est_libre c i = c.(i)=(-1);;

let rec filter ¢ i vi = match vi with

[0O -> 10
| t::q —> if c.(i)=t then
(
if i>t then t::(filter c i q)
else filter c i q
)
else
(
if i<t then t::(filter c i q)
else filter c i q
)

let graphe_augmentation bg c =
let n = Array.length c in
let v = Array.make (n+2) [] in
for i=0 to n-1 do
v.(i) <- filter c i bg.voisins. (i);
if est_libre c i then
(
if i<bg.nl then v.(n) <- i::v.(n)
else v. (i) <= (n+1)::v. (i)
)
done;
{n1=bg.nl; n2=bg.n2; voisins=v}

On appelle chemin augmentant tout chemin du graphe d’augmentation menant de s a ¢.

Question 16 Ecrire une fonction chemin_augmentant : b_graph -> int list prenant en paramétre le graphe
d'augmentation associé a un graphe et a un de ses couplages. Lorsqu'il existe un chemin menant de s a ¢, la fonction

renverra la liste des sommets rencontrés dans |'ordre de parcours du chemin (sans s et t). Si un tel chemin n'existe
pas, la fonction renverra la liste vide.

let chemin_augmentant bg_a =
let chemin = ref [] and vus = Array.make (bg_a.nl+bg_a.n2+2) false in
let rec parcours_profondeur sommets dest = match sommets with
| [1 -> false
| t::q when t=dest -> true
| t::q when vus.(t) -> false
[t::q —> vus.(t) <- true;
if parcours_profondeur bg_a.voisins.(t) dest then

(
chemin := t::(!chemin);
true
)
else parcours_profondeur q dest
in
if parcours_profondeur bg_a.voisins.(bg_a.nl+bg_a.n2) (bg_a.nl+bg_a.n2+1) then
Ichemin
else []

page 6 sur 12

Question 17 Pourquoi un chemin augmentant comporte-t-il toujours un nombre pair de sommets ?

Un chemin augmentant débute toujours par un arc allant de s a un sommet de S et termine toujours par un arc
allant de S a ¢, dés lors il est nécessairement de la forme (s, z1,22,...,2p,t) ob (z1,...,2,) est un chemin allant
d'un sommet de S; a un sommet de S5. Puisqu'il n'existe pas d'arcs allant a s, ni d'arc sortant de ¢, les sommets
Z1,...,Zp sont nécessairement des sommets de S; U S3, donc les arétes sur chemin (z1,...,x,) sont des arétes
du graphe initial. Ce graphe étant biparti selon la partition (S1,S52), les sommets z1,...,x, sont nécessairement
composés d'une alternance de sommets de S; et de S5 ; il comporte donc un nombre impair d'arcs et un nombre pair
de sommets. Ainsi les chemins augmentant comportent toujours un nombre pair de sommets.

Question 18 Ecrire une fonction augmenter_couplage : int array -> int list -> unit qui, étant donné
un couplage et un chemin augmentant de ce couplage, remplace le couplage passé en paramétre par un couplage de
cardinal strictement supérieur.

let rec augmenter_couplage c chemin = match chemin with

| [] -> 0O

| [_] -> failwith "le chemin augmentant devrait avoir un nombre pair de sommets"
| s1::82::q -> c.(s1)<-s2; c.(s2)<-sl; augmenter_couplage c q

3

Question 19 Ecrire une fonction couplage_max : b_graph -> int array qui, étant donné un graphe biparti,
retourne un couplage maximum.

let couplage_max bg =
let ¢ = Array.make (bg.nl+bg.n2) (-1) in
let chemin_a = ref (chemin_augmentant (graphe_augmentant bg c)) in

while !chemin_a <> [] do
augmenter_couplage c¢ (!chemin_a);
chemin_a := (chemin_augmentant (graphe_augmentant bg c))

done;

c

3 Retour au probléme de pavage

On considére le probléme de décision PAVABLE qui, a partir des dimensions d'une surface quadrillée et de la liste de
ses obstacles, indique si la surface peut ou non étre pavée.

Question 20 Le probléme PAVABLE est-il dans la classe NP 7 On justifiera sa réponse.

Ce probléme fait partie de la classe NP car il est possible de vérifier qu'un ensemble de dominos placés forme un
pavage en temps polynomial ; en effet il suffit pour cela de parcourir les dominos en marquant les cases qu'ils pavent
puis de vérifier que toutes les cases sont marquées une et une seule fois.

On choisit de numéroter de gauche a droite et de haut en bas I'ensemble des m cases sans obstacle par les entiers
consécutifs de 0 a m—1. On représente la surface par un graphe non orienté et non pondéré. L'ensemble des sommets
est I'ensemble des numéros des cases sans obstacles et on considére que deux sommets sont adjacents si et seulement
si les cases qu'ils représentent se touchent horizontalement ou verticalement. Les graphes seront représentés par leurs
listes d'adjacence au moyen du type int list array (la case i contient la liste des voisins du sommet 4). En voici
un exemple :

Surface quadrillée numérotée Graphe représentant la surface

o |1 OO
2| 3 O—®

Le graphe sera alors représenté par le tableau [|[1];[0;2];[1;3];[2]11].

page 7 sur 12

Pour simplifier on fera I'hypothése, comme précisé dans la partie précédente, que I'on ne manipulera que des graphes
connexes.

Question 21 Montrer qu'un graphe non orienté quelconque est biparti si et seulement si il est bicolorable.

— Soit G = (S, A) un graphe biparti de partition (S7,S2). En colorant tous les sommets de S; par la couleur
blanche et ceux de Sy par la couleur noire, on obtient un graphe coloré par au plus 2 couleurs. De plus puisque
le graphe est biparti, toutes ses arétes relient un sommet de S; a un sommet de Ss; ainsi deux sommets
adjacents ont une couleur différente. Le graphe est bien bicolorable.

— Réciproquement, considérons G = (S, A) un graphe bicolorable. Construisons S; comme étant I'ensemble des
sommets d’'une méme couleur et Sy I'ensemble des sommets de I'autre couleur. Tous les sommets étant colorés
et chaque sommet admettant au plus une couleur, on obtient que (51, S2) est une partition de S. De plus il
ne peux exister d'arétes reliant deux sommets de S; ou deux sommets de S; sinon on aurait existence de 2
sommets adjacents de méme couleur, ce qui est impossible. Le graphe G est donc bien biparti.

Finalement un graphe non orienté quelconque est biparti si et seulement si il est bicolorable.

Question 22 Montrer que le graphe représentant une surface est toujours bicolorable.

Considérons que la surface ne comporte pas d'obstacles. On colore les cases de la surface a I'aide de 2 couleurs (blanc
et noir) en damier, en commencant par attribuer la couleur blanche a la case supérieure gauche. On reporte alors
les couleurs des cases aux sommets qui les représentent. On a alors coloré le graphe avec au plus 2 couleurs et 2
sommets qui ont la méme couleur ne peuvent étre adjacents de la la répartition en damier des couleurs.

Dans le cas ol la surface comporte des obstacle, il suffit de procéder comme si elle n'en comportait pas puis
de supprimer les sommets associés aux obstacles et enfin a renuméroter les sommets du graphe pour obtenir une
bicoloration du graphe.

Question 23 Ecrire une fonction creer_b_graph : int list array -> b_graph * int array prenant en pa-
rameétre un graphe biparti G représenté par listes d’adjacence. La fonction retournera une représentation de ce graphe
sous le type b_graph ainsi que la renumérotation adoptée pour I'ensemble de ses sommets.

let creer_b_graph 1_adj =
let n=Array.length 1_adj and il = ref O and i2 = ref O in
let couleur = Array.make n (-1) and numeros = Array.make n (-1)
and 1_adj2 = Array.make n [] in
let rec parcours sommets coul suivants = match suivants,sommets with
[0,0 >0
[_ .0 -> parcours suivants (1-coul) []
[_ ,t::q —> couleur.(t) <- coul;
if coul=0 then (numeros.(t) <- !'il; incr il)
else (numeros.(t) <- !i2; incr i2);
parcours q coul (insere_liste 1_adj.(t) suivants)
and insere_liste 11 12 = match 11 with
| 1 ->12
| t::q —> if couleur.(t)=(-1) then insere_liste q (insere t 12)
else insere_liste q 12
and insere x 1 = match 1 with
[0O - [x]
| t::q —> if x<t then x::1
else if x=t themn 1
else t::(insere x q)
and traduire sommets = match sommets with
O ->1I
[t::q —> (numeros. (t))::(traduire q)
in

page 8 sur 12

parcours [0] 1 [];
for i=0 to n-1 do

numeros. (i) <- numeros. (i)+couleur. (i)*('i1)
done;
for i=0 to n-1 do

1_adj2. (numeros. (i)) <- traduire 1_adj. (i)
done;
{n1 = !il; n2 = !i2; voisins = 1_adj2},numeros

Question 24 Expliquer comment résoudre le probleme PAVABLE et indiquer les conclusions que 'on peut en tirer
concernant sa classe de complexité.

— Chaque placement, sans recouvrement, des dominos sur la surface correspond a un couplage du graphe associé.
En effet, lorsqu'un domino est placé sur les cases numéros i et j, on peut lui associer |'aréte reliant les sommets
i et j. En sélectionnant toutes ses arétes, on obtient bien un couplage du graphe car si deux de ces arétes
étaient incidentes, les deux dominos se recouvreraient sur une méme case.

— Réciproquement, tout couplage du graphe associé a une surface correspond a un placement, sans recouvre-
ments, de dominos sur la surface. En effet, pour chaque aréte {i,j} d'un couplage, on peut choisir de poser
un domino recouvrant les cases i et j et aucun de ces dominos ne se recouvrent sinon il existerait 2 arétes
incidentes dans le couplage.

Ainsi pour résoudre le probléeme PAVABLE, il suffit de déterminer un couplage maximum du graphe associé. Si le
nombre de cases a paver est égal a deux fois le cardinal du couplage (un domino couvre deux sommets), on en déduit
qu’il existe un pavage de la surface; dans le cas contraire, il n'en existe pas.

Construire le graphe associé a un pavage, résoudre le probleme du couplage maximum dans un graphe biparti et
déterminer le cardinal du couplage se faisant en temps polynomial, on en déduit que PAVABLE est dans P.

page 9 sur 12

Numéro de candidat :

Document a insérer dans votre copie d’examen

QCM - MPI

Dans ce questionnaire a choix multiples, chaque question comporte une ou plusieurs bonnes réponses.

Chaque réponse correcte fait gagner des points, mais chaque réponse fausse annule tous les points de la question.
Les questions peuvent-étre formulées au pluriel par commodité d’expression. Cela n'implique pas nécessairement
qu'elles admettent plusieurs réponses correctes.

On considere la fonction, écrite en langage C, suivante :

int mystere(int m, int n)

{
int t=1;
if (n>0)
{
t = mystere(m,n/2);
t = trt;
if (n%2==1)
t=m*t;
}
return t;
}

1. La fonction mystere :
O effectue un nombre linéaire d'appels récursifs en n quand n est une puissance de 2;
[0 effectue un nombre quadratique d'appels récursifs en n quand n est une puissance de 2;
B permet de calculer les puissances d'un nombre;
[0 permet de calculer le produit de deux nombres.

2. L'ensemble des langages réguliers est stable :
B par intersection finie;
B par union finie;
O par union infinie;
B par passage au complémentaire.

3. L'algorithme de Kosaraju permet de :
B déterminer les composantes fortement connexes d'un graphe orienté;
(1 déterminer un plus court chemin entre tout couple de sommets d'un graphe orienté;
[0 déterminer un arbre couvrant de poids minimal d'un graphe non orienté pondéré ;
O déterminer un automate fini acceptant le langage dénoté par une expression réguliere.

4. Parmi les algorithmes suivants, indiquer ceux opérant sur des graphes.
B I'algorithme de Kruskal;
O I'algorithme de Boyer-Moore ;
O I'algorithme de Quine;
B I'algorithme de Dijkstra.

5. La formule propositionnelle (ma VbV e)A(aV—-bVe)A(aVbV —c):
B est sous forme normale conjonctive;

est sous forme normale disjonctive ;

est satisfiable;

est équivalente a (a Ab)V (aAc)V (bAc).

HE[

page 10 sur 12

Annexe A — regles de la déduction naturelle

On se donne les régles suivantes de la déduction naturelle ot ¢, @1, @2 et ¥ désignent des formules logiques et T un
ensemble de formules logiques. De plus T désigne la tautologie et L |'antilogie (ou contradiction).

Axiome | Affaiblissement
'k

(aff)
FolFo | TVAFRe
Elimination Introduction
'L
Tetl — (Le — (T
s () —— (T)
I'F o1 Aps '@ Ap ' Tk
A ——— (A\e) —————— (A)
L'k [k oo L' Ao
y F'FeiVes Top 9].",gog}—z/}(v) 'k 4 I'F @9
F"?ﬁ N F}_(pl\/wg ! Fl_(pl\/(pQ
'y Tre—9y | RNGRCR T
E () Y (o)
T 'kp—9y
Tk ka() F,wFi()
NS ‘ Thop

On s'autorisera également I'emploi des deux régles suivantes sans en fournir d'arbre de preuve :

'k—=p;v~o 'kE—-p; A=
L S UE e Aoee

(\/dm)
I'F=(p1 Apa) ' =(e1 V)

Annexe B — extraits de la documentation OCaml

Extraits concernant le module Array pour manipuler des tableaux

val length : 'a array -> int
I Return the length (number of elements) of the given array.

val make : int -> 'a -> 'a array
make n x returns a fresh array of length n, initialized with x. All the elements of this new array are initially
physically equal to x (in the sense of the == predicate). Consequently, if x is mutable, it is shared among all
elements of the array, and modifying x through one of the array entries will modify all other entries at the same
time.

val copy : 'a array -> 'a array
I copy a returns a copy of a, that is, a fresh array containing the same elements as a.

val iter : ('a -> unit) -> 'a array -> unit
iter f a applies function £ in turn to all the elements of a.
It is equivalent tof a.(0); £ a.(1); ...; f a.(length a - 1); ().

val map : ('a -> 'b) -> 'a array -> 'b array
map f a applies function £ to all the elements of a, and builds an array with the results returned by £ :
[l £fa.(0; £fa.(1); ...; £ a.(length a - 1) |].

val for_all : ('a -> bool) -> 'a array -> bool

for_all f [lal; ...; anl|] checks if all elements of the array satisfy the predicate f.
That is, it returns (£ al) && (f a2) && ... && (f an).

1. Sources : https://ocaml.org/manual/5.2/api/Array.html, https://ocaml.org/manual/5.2/api/List.html
et https://ocaml.org/manual/5.2/api/Queue.html

page 11 sur 12

val exists : ('a -> bool) -> 'a array -> bool
exists £ [lal; ...; anl] checks if at least one element of the array satisfies the predicate f.
That is, it returns (£ a1) || (£ a2) || ... || (£ an).

Extraits du module List pour manipuler des listes

val length : 'a list -> int
I Return the length (number of elements) of the given list.

val hd : 'a list -> 'a
I Return the first element of the given list.

val t1 : 'a list -> 'a list
I Return the given list without its first element.

val rev : 'a list -> 'a list
I List reversal.

val iter : ('a -> unit) -> 'a list -> unit
iter £ [al; ...; an] applies function f in turn to [al; ...; an]. It is equivalent tof al; f a2; ...; f
an.

val map : ('a -> 'b) -> 'a list -> 'b list
map £ [al; ...; an] applies function £ to al, ..., an, and builds the list [f al; ...; f an] with the
results returned by £.

val fold_left : ('acc -> 'a -> 'acc) -> 'acc -> 'a list -> 'acc

| fold_1eft £ init [b1; ...; bnlis£ (... (£ (f init b1) b2) ...) bn.

val for_all : ('a -> bool) -> 'a list -> bool

for_all f [al; ...; an] checks if all elements of the list satisfy the predicate f.

That is, it returns (f al) && (f a2) && ... && (£ an) for a non-empty list and true if the list is empty.

val exists : ('a -> bool) -> 'a list -> bool

exists f [al; ...; an] checks if at least one element of the list satisfies the predicate f.
That is, it returns (f al) || (f a2) || ... || (£ an) for a non-empty list and false if the list is empty.
val mem : 'a -> 'a list -> bool

Imem a set is true if and only if a is equal to an element of set.

Extraits concernant le module Queue pour manipuler des files

val create : unit -> 'a t
I Return a new queue, initially empty.

val push : 'a -> 'a t -> unit
I push x q adds the element x at the end of the queue q.

val pop : 'at -> 'a
I pop q removes and returns the first element in queue q, or raises Queue .Empty if the queue is empty.

val is_empty : 'a t —> bool
I Return true if the given queue is empty, false otherwise.

Fin du corrigé

page 12 sur 12

