
Concours CPGE EPITA-IPSA-ESME
2025

Corrigé de l’épreuve de Sciences du numérique MPI

Le sujet est composé dŠun problème et dŠun questionnaire à choix multiples. Le questionnaire à choix multiples devra
être inséré dans votre copie.

Les arbres de preuve demandés dans ce sujet devront utiliser les règles de la déduction naturelle listées en annexe.

Les fonctions à produire dans ce sujet devront être rédigées en OCaml. Il est possible dŠécrire des fonctions auxiliaires
non explicitement demandées à condition de les documenter et de les déĄnir avant dŠen faire usage. Seules les
primitives du langage OCaml ainsi que les fonctions des modules List, Array et Queue pourront être utilisées sans
restrictions. La documentation de certaines de ces fonctions est rappelée en annexe.

Problème – Pavage d’une surface avec des dominos

On considère une surface quadrillée composée de n rangées de p colonnes que l’on souhaite recouvrir avec des dalles
de taille 1 par 2 que nous appellerons dominos. Les dominos ne peuvent être disposés que verticalement ou horizon-
talement. On fait de plus l’hypothèse que certaines cases du quadrillage peuvent comporter un obstacle (symbolisé
par une croix) et ne sont donc pas à recouvrir.

L’objectif de ce problème est de déterminer un pavage de la surface, c’est-à-dire un recouvrement intégral, avec des
dominos, des cases ne comportant pas d’obstacles.

Voici un exemple de surface de taille n = 3 par p = 5 comportant 3 obstacles :

On peut paver cette surface à l’aide de 6 dominos A, B, C, D, E et F de la façon suivante :

A

B

C

D

E F

page 1 sur 12

1 Dénombrement et déduction naturelle

Question 1 Montrer par un raisonnement en langue française, qu’il n’existe qu’un seul pavage complet de la surface
représentée ci-après et dont on a numéroté les cases.

0

1 2 3

4 5

Pour paver la case 0, il est nécessaire de mettre un domino recouvrant les cases 0 et 2. Il devient alors nécessaire de
recouvrir d’un domino les cases 1 et 4 et d’un second les cases 3 et 5. Il n’y a donc qu’un seul pavage complet pour
cette surface.

Question 2 Une surface quadrillée avec des obstacles qui comporterait un nombre pair de cases libres est-elle toujours
pavable ? En est-il de même si la surface est sans obstacle ? On justifiera ses réponses.

Une surface quadrillée à 2n cases libres n’est pas toujours pavable, prenons l’exemple de la surface suivante pour
n ⩾ 1 :

· · ·

· · ·

2 rangées

n+ 1 colonnes

Cette configuration comporte 2(n+ 1) − 2 = 2n cases libres mais n’est pas pavable car la case supérieure gauche ne
peut pas être recouverte par un domino en raison des obstacles.

En revanche, une surface sans obstacles ayant un nombre pair de cases est toujours pavable. En effet, le nombre de
rangées ou le nombre de colonnes est nécessairement pair, considérons, quitte à tourner la surface de 90 degrés que
le nombre de rangées soit pair. Il suffit alors d’empiler verticalement les dominos sur chaque colonne pour obtenir un
pavage.

Question 3 Considérons une surface sans obstacles de taille 2 par n et notons un le nombre de façons de paver cette
surface, montrer que ∀n ∈ N

⋆, un+2 = un+1 + un. On précisera les valeurs de u1 et u2.

En plaçant un premier domino verticalement tout à gauche, il reste un+1 façons de paver les 2(n+1) cases restantes :

· · ·

· · ·

2 rangées

n+ 2 colonnes

L’autre façon de paver la première colonne consiste à placer 2 dominos horizontaux l’un en dessous de l’autre :

· · ·

· · ·

2 rangées

n+ 2 colonnes

Il reste alors un façons de paver les 2n cases restantes. On en déduit que ∀n ∈ N
⋆, un+2 = un+1 + un.

Enfin, on a u1 = 1 et u2 = 2 (en plaçant 2 dominos verticalement ou horizontalement).

page 2 sur 12

On considère à présent la surface suivante dont on a numéroté les cases sans obstacles :

0 1

2 3

Notons a la variable propositionnelle indiquant si un même domino est placé sur les cases 0 et 1, b celle indiquant si
un même domino est placé sur les cases 1 et 2 et c celle indiquant si un même domino est placé sur les cases 2 et 3.

Question 4 Donner une formule propositionnelle φ1, exprimée sous forme normale disjonctive, traduisant le fait que
la case numéro 1 doit être recouverte par exactement un domino.

φ1 ≡ (a ∧ ¬b) ∨ (¬a ∧ b)

Question 5 Donner une formule propositionnelle φ2, exprimée sous forme normale conjonctive, traduisant le fait que
la case numéro 2 doit être recouverte par exactement un domino.

φ2 ≡ ¬((¬b ∧ ¬c) ∨ (b ∧ c)) ≡ (b ∨ c) ∧ (¬b ∨ ¬c))

Question 6 Établir un arbre de preuve pour le séquent φ1, b ⊢ ¬a.

(ax)
φ1, b ⊢ φ1

(ax)
φ1, b, a ∧ ¬b, a ⊢ b

(ax)
φ1, b, a ∧ ¬b, a ⊢ a ∧ ¬b

(∧e)
φ1, b, a ∧ ¬b, a ⊢ ¬b

(¬e)
φ1, b, a ∧ ¬b, a ⊢ ⊥

(¬i)
φ1, b, a ∧ ¬b ⊢ ¬a

(ax)
φ1, b,¬a ∧ b ⊢ ¬a ∧ b

(∧e)
φ1, b,¬a ∧ b ⊢ ¬a

(∨e)
φ1, b ⊢ ¬a

Question 7 Établir un arbre de preuve pour le séquent φ2, b ⊢ ¬c.

(ax)
φ2, b, c ⊢ b

(ax)
φ2, b, c ⊢ c

(∧i)
φ2, b, c ⊢ b ∧ c

(ax)
φ2, b, c ⊢ (b ∨ c) ∧ (¬b ∨ ¬c)

(∧e)
φ2, b, c ⊢ ¬b ∨ ¬c

(∧dm)
φ2, b, c ⊢ ¬(b ∧ c)

(¬e)
φ2, b, c ⊢ ⊥

(¬i)
φ2, b ⊢ ¬c

Question 8 On définit la formule propositionnelle φ3 : (¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) ∨ (a ∧ b ∧ ¬c).
Pourquoi faut-il que φ3 soit satisfaite dans le cadre de notre problème ?

On cherche à paver 4 cases, il faut donc pour cela utiliser exactement 2 dominos, ce que décrit la contrainte φ3.

Question 9 Indiquer, au moyen d’une table de vérité, ce que l’on peut dire du séquent : φ3, b ⊢ a ∨ c.

Dressons la table de vérité de φ3 et indiquons celle de φ3 ∧ b ⇒ a ∨ c.

a b c φ3 φ3 ∧ b a ∨ c φ3 ∧ b ⇒ a ∨ c

F F F F F F V

F F V F F V V

F V F F F F V

F V V V V V V

V F F F F V V

V F V V F V V

V V F V V V V

V V V F F V V

Dès lors φ3 ∧ b ⇒ a ∨ c est une tautologie et il existe donc un arbre de preuve pour le séquent : φ3, b ⊢ a ∨ c.

page 3 sur 12

Question 10 À partir des séquents prouvés précédemment, construire un arbre de preuve du séquent φ1, φ2, φ3 ⊢ ¬b.
Expliquer ce que cela traduit concernant la configuration des dominos pour le problème.

φ3, b ⊢ a ∨ c
(aff)

φ1, φ2, φ3, b ⊢ a ∨ c

φ1, b ⊢ ¬a
(aff)

φ1, φ2, φ3, b ⊢ ¬a

φ2, b ⊢ ¬c
(aff)

φ1, φ2, φ3, b ⊢ ¬c
(∧i)

φ1, φ2, φ3, b ⊢ ¬a ∧ ¬c
(∨dm)

φ1, φ2, φ3, b ⊢ ¬(a ∨ c)
(¬e)

φ1, φ2, φ3, b ⊢ ⊥
(¬i)

φ1, φ2, φ3 ⊢ ¬b

On en déduit que les solutions du problème n’ont pas de domino à cheval sur les cases 1 et 2.

Question 11 Existe-t’il un arbre de preuve du séquent φ1, φ2, φ3 ⊢ ¬a ? On justifiera sa réponse.

On remarque que la formule φ1 ∧ φ2 ∧ φ3 ⇒ ¬a n’est pas une tautologie car elle n’est pas vérifiée pour la valuation
(a, b, c) = (V, F, V) donc il ne peut pas exister d’arbre de preuve pour le séquent φ1, φ2, φ3 ⊢ ¬a.

2 Recherche d’un couplage maximum dans un graphe biparti

On fait l’hypothèse, pour tout le reste du problème, que les graphes manipulés sont connexes.

On rappelle qu’un graphe G = (S,A) est biparti s’il existe une partition de S en deux ensembles S1 et S2 tels
que les arcs de A ont une de leurs extrémités dans S1 et l’autre dans S2. On rappelle également qu’un graphe est
bicolorable s’il est possible d’attribuer une couleur à chacun de ses sommets de façon à utiliser au plus 2 couleurs
différentes et que deux sommets adjacents n’aient jamais la même couleur.

Quitte à renuméroter les sommets des graphes considérés, on choisit de représenter les graphes bipartis par le type :
type b_graph =

{

n1 : int;

n2 : int;

voisins : int list array

}

;;

où n1 est le cardinal de S1, n2 celui de S2 et voisins est la représentation par listes d’adjacence du graphe.
Les sommets de S1 étant alors renumérotés de 0 à n1 − 1 et ceux de S2 de n1 à n1 + n2 − 1. La renumérotation
des sommets sera représentée par un tableau de n1 + n2 entiers de sorte que la case d’indice i contienne le nouveau
numéro du sommet i.

Par exemple :

un graphe biparti

0

2

4

1

3

5

une renumérotation possible

0

1

2

3

4

5

Ainsi {n1=3; n2=3; voisins = [|[4];[3;4;5];[3];[1;2];[0;1];[1]|]} pourra représenter le graphe de l’exemple
ci-dessus et [|0;3;1;4;2;5|] la renumérotation qui lui est associée.

page 4 sur 12

On rappelle qu’un couplage d’un graphe est un ensemble d’arêtes du graphe deux à deux non incidentes (c’est-à-dire
n’ayant pas de sommet en commun). Par exemple l’ensemble des arêtes {1, 4} et {2, 3} est un couplage du graphe
biparti suivant :

0

1

2

3

4

5

Le cardinal d’un couplage est le nombre d’arêtes qui le composent. Un couplage d’un graphe est dit maximum
lorsqu’il n’existe pas de couplage du graphe dont le cardinal lui serait strictement supérieur.

On choisit de représenter les couplages par un tableau indexé par les sommets du graphe. Le contenu de la case
d’indice i contient le numéro du sommet avec lequel i est couplé, et -1 sinon.

Question 12 Donner le tableau représentant le couplage ci-dessus.

[|-1;4;3;2;1;-1|]

Question 13 Écrire une fonction cardinal : int array -> int prenant en paramètre un couplage et retournant
son cardinal.

let cardinal c =

let nb = ref 0 in

for i=0 to (Array.length c)-1 do

if c.(i)>(-1) then incr nb

done;

!nb/2

;;

On rappelle qu’un sommet est libre vis-à-vis d’un couplage s’il n’est l’extrémité d’aucune arête du couplage.

Le graphe d’augmentation associé à un couplage C d’un graphe biparti G est le graphe orienté obtenu à partir de
G en appliquant les transformations suivantes :

1. orientation des arêtes :

— les arêtes appartenant au couplage C sont orientées des sommets de S2 vers ceux de S1 ;

— les arêtes n’appartenant pas au couplage C sont orientées des sommets de S1 vers ceux de S2 ;

2. ajout de sommets : on ajoute deux nouveaux sommets s et t, respectivement numérotés n1 +n2 et n1 +n2 +1 ;

3. ajout dŠarcs :

— on ajoute pour chaque sommet x de S1 et libre vis-à-vis de C, un arc allant de s vers x ;

— on ajoute pour chaque sommet y de S2 et libre vis-à-vis de C, un arc allant de y vers t.

Les graphes d’augmentation seront également représentés par le type b_graph.

Question 14 Dessiner le graphe d’augmentation associé au couplage et au graphe de l’exemple précédent.

0

1

2

3

4

5

6 7

page 5 sur 12

Question 15 Écrire une fonction graphe_augmentation : b_graph -> int array -> b_graph construisant le
graphe d’augmentation d’un graphe biparti et d’un couplage du graphe donnés. On prendra soin de retourner un
graphe indépendant de celui passé en paramètre.

let est_libre c i = c.(i)=(-1);;

let rec filter c i vi = match vi with

| [] -> []

| t::q -> if c.(i)=t then

(

if i>t then t::(filter c i q)

else filter c i q

)

else

(

if i<t then t::(filter c i q)

else filter c i q

)

;;

let graphe_augmentation bg c =

let n = Array.length c in

let v = Array.make (n+2) [] in

for i=0 to n-1 do

v.(i) <- filter c i bg.voisins.(i);

if est_libre c i then

(

if i<bg.n1 then v.(n) <- i::v.(n)

else v.(i) <- (n+1)::v.(i)

)

done;

{n1=bg.n1; n2=bg.n2; voisins=v}

;;

On appelle chemin augmentant tout chemin du graphe d’augmentation menant de s à t.

Question 16 Écrire une fonction chemin_augmentant : b_graph -> int list prenant en paramètre le graphe
d’augmentation associé à un graphe et à un de ses couplages. Lorsqu’il existe un chemin menant de s à t, la fonction
renverra la liste des sommets rencontrés dans l’ordre de parcours du chemin (sans s et t). Si un tel chemin n’existe
pas, la fonction renverra la liste vide.

let chemin_augmentant bg_a =

let chemin = ref [] and vus = Array.make (bg_a.n1+bg_a.n2+2) false in

let rec parcours_profondeur sommets dest = match sommets with

| [] -> false

| t::q when t=dest -> true

| t::q when vus.(t) -> false

| t::q -> vus.(t) <- true;

if parcours_profondeur bg_a.voisins.(t) dest then

(

chemin := t::(!chemin);

true

)

else parcours_profondeur q dest

in

if parcours_profondeur bg_a.voisins.(bg_a.n1+bg_a.n2) (bg_a.n1+bg_a.n2+1) then

!chemin

else []

;;

page 6 sur 12

Question 17 Pourquoi un chemin augmentant comporte-t-il toujours un nombre pair de sommets ?

Un chemin augmentant débute toujours par un arc allant de s à un sommet de S1 et termine toujours par un arc
allant de S2 à t, dès lors il est nécessairement de la forme (s, x1, x2, . . . , xp, t) où (x1, . . . , xp) est un chemin allant
d’un sommet de S1 à un sommet de S2. Puisqu’il n’existe pas d’arcs allant à s, ni d’arc sortant de t, les sommets
x1, . . . , xp sont nécessairement des sommets de S1 ∪ S2, donc les arêtes sur chemin (x1, . . . , xp) sont des arêtes
du graphe initial. Ce graphe étant biparti selon la partition (S1, S2), les sommets x1, . . . , xp sont nécessairement
composés d’une alternance de sommets de S1 et de S2 ; il comporte donc un nombre impair d’arcs et un nombre pair
de sommets. Ainsi les chemins augmentant comportent toujours un nombre pair de sommets.

Question 18 Écrire une fonction augmenter_couplage : int array -> int list -> unit qui, étant donné
un couplage et un chemin augmentant de ce couplage, remplace le couplage passé en paramètre par un couplage de
cardinal strictement supérieur.

let rec augmenter_couplage c chemin = match chemin with

| [] -> ()

| [_] -> failwith "le chemin augmentant devrait avoir un nombre pair de sommets"

| s1::s2::q -> c.(s1)<-s2; c.(s2)<-s1; augmenter_couplage c q

;;

Question 19 Écrire une fonction couplage_max : b_graph -> int array qui, étant donné un graphe biparti,
retourne un couplage maximum.

let couplage_max bg =

let c = Array.make (bg.n1+bg.n2) (-1) in

let chemin_a = ref (chemin_augmentant (graphe_augmentant bg c)) in

while !chemin_a <> [] do

augmenter_couplage c (!chemin_a);

chemin_a := (chemin_augmentant (graphe_augmentant bg c))

done;

c

;;

3 Retour au problème de pavage

On considère le problème de décision Pavable qui, à partir des dimensions d’une surface quadrillée et de la liste de
ses obstacles, indique si la surface peut ou non être pavée.

Question 20 Le problème Pavable est-il dans la classe NP ? On justifiera sa réponse.

Ce problème fait partie de la classe NP car il est possible de vérifier qu’un ensemble de dominos placés forme un
pavage en temps polynomial ; en effet il suffit pour cela de parcourir les dominos en marquant les cases qu’ils pavent
puis de vérifier que toutes les cases sont marquées une et une seule fois.

On choisit de numéroter de gauche à droite et de haut en bas l’ensemble des m cases sans obstacle par les entiers
consécutifs de 0 à m−1. On représente la surface par un graphe non orienté et non pondéré. L’ensemble des sommets
est l’ensemble des numéros des cases sans obstacles et on considère que deux sommets sont adjacents si et seulement
si les cases qu’ils représentent se touchent horizontalement ou verticalement. Les graphes seront représentés par leurs
listes d’adjacence au moyen du type int list array (la case i contient la liste des voisins du sommet i). En voici
un exemple :

Surface quadrillée numérotée

0 1

2 3

Graphe représentant la surface

0 1

2 3

Le graphe sera alors représenté par le tableau [|[1];[0;2];[1;3];[2]|].

page 7 sur 12

Pour simplifier on fera l’hypothèse, comme précisé dans la partie précédente, que l’on ne manipulera que des graphes
connexes.

Question 21 Montrer qu’un graphe non orienté quelconque est biparti si et seulement si il est bicolorable.

— Soit G = (S,A) un graphe biparti de partition (S1, S2). En colorant tous les sommets de S1 par la couleur
blanche et ceux de S2 par la couleur noire, on obtient un graphe coloré par au plus 2 couleurs. De plus puisque
le graphe est biparti, toutes ses arêtes relient un sommet de S1 à un sommet de S2 ; ainsi deux sommets
adjacents ont une couleur différente. Le graphe est bien bicolorable.

— Réciproquement, considérons G = (S,A) un graphe bicolorable. Construisons S1 comme étant l’ensemble des
sommets d’une même couleur et S2 l’ensemble des sommets de l’autre couleur. Tous les sommets étant colorés
et chaque sommet admettant au plus une couleur, on obtient que (S1, S2) est une partition de S. De plus il
ne peux exister d’arêtes reliant deux sommets de S1 ou deux sommets de S2 sinon on aurait existence de 2
sommets adjacents de même couleur, ce qui est impossible. Le graphe G est donc bien biparti.

Finalement un graphe non orienté quelconque est biparti si et seulement si il est bicolorable.

Question 22 Montrer que le graphe représentant une surface est toujours bicolorable.

Considérons que la surface ne comporte pas d’obstacles. On colore les cases de la surface à l’aide de 2 couleurs (blanc
et noir) en damier, en commençant par attribuer la couleur blanche à la case supérieure gauche. On reporte alors
les couleurs des cases aux sommets qui les représentent. On a alors coloré le graphe avec au plus 2 couleurs et 2
sommets qui ont la même couleur ne peuvent être adjacents de la la répartition en damier des couleurs.

Dans le cas où la surface comporte des obstacle, il suffit de procéder comme si elle n’en comportait pas puis
de supprimer les sommets associés aux obstacles et enfin à renuméroter les sommets du graphe pour obtenir une
bicoloration du graphe.

Question 23 Écrire une fonction creer_b_graph : int list array -> b_graph * int array prenant en pa-
ramètre un graphe biparti G représenté par listes d’adjacence. La fonction retournera une représentation de ce graphe
sous le type b_graph ainsi que la renumérotation adoptée pour l’ensemble de ses sommets.

let creer_b_graph l_adj =

let n=Array.length l_adj and i1 = ref 0 and i2 = ref 0 in

let couleur = Array.make n (-1) and numeros = Array.make n (-1)

and l_adj2 = Array.make n [] in

let rec parcours sommets coul suivants = match suivants,sommets with

| [],[] -> ()

| _ ,[] -> parcours suivants (1-coul) []

| _ ,t::q -> couleur.(t) <- coul;

if coul=0 then (numeros.(t) <- !i1; incr i1)

else (numeros.(t) <- !i2; incr i2);

parcours q coul (insere_liste l_adj.(t) suivants)

and insere_liste l1 l2 = match l1 with

| [] -> l2

| t::q -> if couleur.(t)=(-1) then insere_liste q (insere t l2)

else insere_liste q l2

and insere x l = match l with

| [] -> [x]

| t::q -> if x<t then x::l

else if x=t then l

else t::(insere x q)

and traduire sommets = match sommets with

| [] -> []

| t::q -> (numeros.(t))::(traduire q)

in

page 8 sur 12

parcours [0] 1 [];

for i=0 to n-1 do

numeros.(i) <- numeros.(i)+couleur.(i)*(!i1)

done;

for i=0 to n-1 do

l_adj2.(numeros.(i)) <- traduire l_adj.(i)

done;

{n1 = !i1; n2 = !i2; voisins = l_adj2},numeros

;;

Question 24 Expliquer comment résoudre le problème Pavable et indiquer les conclusions que l’on peut en tirer
concernant sa classe de complexité.

— Chaque placement, sans recouvrement, des dominos sur la surface correspond à un couplage du graphe associé.
En effet, lorsqu’un domino est placé sur les cases numéros i et j, on peut lui associer l’arête reliant les sommets
i et j. En sélectionnant toutes ses arêtes, on obtient bien un couplage du graphe car si deux de ces arêtes
étaient incidentes, les deux dominos se recouvreraient sur une même case.

— Réciproquement, tout couplage du graphe associé à une surface correspond à un placement, sans recouvre-
ments, de dominos sur la surface. En effet, pour chaque arête ¶i, j♢ d’un couplage, on peut choisir de poser
un domino recouvrant les cases i et j et aucun de ces dominos ne se recouvrent sinon il existerait 2 arêtes
incidentes dans le couplage.

Ainsi pour résoudre le problème Pavable, il suffit de déterminer un couplage maximum du graphe associé. Si le
nombre de cases à paver est égal à deux fois le cardinal du couplage (un domino couvre deux sommets), on en déduit
qu’il existe un pavage de la surface ; dans le cas contraire, il n’en existe pas.

Construire le graphe associé à un pavage, résoudre le problème du couplage maximum dans un graphe biparti et
déterminer le cardinal du couplage se faisant en temps polynomial, on en déduit que Pavable est dans P.

page 9 sur 12

QCM – MPI
Numéro de candidat :
Document à insérer dans votre copie d’examen

Dans ce questionnaire à choix multiples, chaque question comporte une ou plusieurs bonnes réponses.
Chaque réponse correcte fait gagner des points, mais chaque réponse fausse annule tous les points de la question.
Les questions peuvent-être formulées au pluriel par commodité dŠexpression. Cela nŠimplique pas nécessairement
quŠelles admettent plusieurs réponses correctes.

On considère la fonction, écrite en langage C, suivante :

int mystere(int m, int n)

{

int t=1;

if (n>0)

{

t = mystere(m,n/2);

t = t*t;

if (n%2==1)

t=m*t;

}

return t;

}

1. La fonction mystere :
□ effectue un nombre linéaire d’appels récursifs en n quand n est une puissance de 2 ;
□ effectue un nombre quadratique d’appels récursifs en n quand n est une puissance de 2 ;
■ permet de calculer les puissances d’un nombre ;
□ permet de calculer le produit de deux nombres.

2. L’ensemble des langages réguliers est stable :
■ par intersection finie ;
■ par union finie ;
□ par union infinie ;
■ par passage au complémentaire.

3. L’algorithme de Kosaraju permet de :
■ déterminer les composantes fortement connexes d’un graphe orienté ;
□ déterminer un plus court chemin entre tout couple de sommets d’un graphe orienté ;
□ déterminer un arbre couvrant de poids minimal d’un graphe non orienté pondéré ;
□ déterminer un automate fini acceptant le langage dénoté par une expression régulière.

4. Parmi les algorithmes suivants, indiquer ceux opérant sur des graphes.
■ l’algorithme de Kruskal ;
□ l’algorithme de Boyer-Moore ;
□ l’algorithme de Quine ;
■ l’algorithme de Dijkstra.

5. La formule propositionnelle (¬a ∨ b ∨ c) ∧ (a ∨ ¬b ∨ c) ∧ (a ∨ b ∨ ¬c) :
■ est sous forme normale conjonctive ;
□ est sous forme normale disjonctive ;
■ est satisfiable ;
■ est équivalente à (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c).

page 10 sur 12

Annexe A – règles de la déduction naturelle

On se donne les règles suivantes de la déduction naturelle où φ, φ1, φ2 et ψ désignent des formules logiques et Γ un
ensemble de formules logiques. De plus ⊤ désigne la tautologie et ⊥ l’antilogie (ou contradiction).

Axiome Affaiblissement

Γ, φ ⊢ φ

Γ ⊢ φ
(aff)

Γ,∆ ⊢ φ

Élimination Introduction

⊤ et ⊥
Γ ⊢ ⊥

(⊥e)
Γ ⊢ φ

(⊤i)
Γ ⊢ ⊤

∧
Γ ⊢ φ1 ∧ φ2

(∧e)
Γ ⊢ φ1

Γ ⊢ φ1 ∧ φ2
(∧e)

Γ ⊢ φ2

Γ ⊢ φ1 Γ ⊢ φ2
(∧i)

Γ ⊢ φ1 ∧ φ2

∨
Γ ⊢ φ1 ∨ φ2 Γ, φ1 ⊢ ψ Γ, φ2 ⊢ ψ

(∨e)
Γ ⊢ ψ

Γ ⊢ φ1
(∨i)

Γ ⊢ φ1 ∨ φ2

Γ ⊢ φ2
(∨i)

Γ ⊢ φ1 ∨ φ2

→
Γ ⊢ φ Γ ⊢ φ → ψ

(→e)
Γ ⊢ ψ

Γ, φ ⊢ ψ
(→i)

Γ ⊢ φ → ψ

¬
Γ ⊢ φ Γ ⊢ ¬φ

(¬e)
Γ ⊢ ⊥

Γ, φ ⊢ ⊥
(¬i)

Γ ⊢ ¬φ

On s’autorisera également l’emploi des deux règles suivantes sans en fournir d’arbre de preuve :

Γ ⊢ ¬φ1 ∨ ¬φ2
(∧dm)

Γ ⊢ ¬(φ1 ∧ φ2)

Γ ⊢ ¬φ1 ∧ ¬φ2
(∨dm)

Γ ⊢ ¬(φ1 ∨ φ2)

Annexe B – extraits de la documentation OCaml 1

Extraits concernant le module Array pour manipuler des tableaux

val length : 'a array -> int

Return the length (number of elements) of the given array.

val make : int -> 'a -> 'a array

make n x returns a fresh array of length n, initialized with x. All the elements of this new array are initially
physically equal to x (in the sense of the == predicate). Consequently, if x is mutable, it is shared among all
elements of the array, and modifying x through one of the array entries will modify all other entries at the same
time.

val copy : 'a array -> 'a array

copy a returns a copy of a, that is, a fresh array containing the same elements as a.

val iter : ('a -> unit) -> 'a array -> unit

iter f a applies function f in turn to all the elements of a.
It is equivalent to f a.(0); f a.(1); ...; f a.(length a - 1); ().

val map : ('a -> 'b) -> 'a array -> 'b array

map f a applies function f to all the elements of a, and builds an array with the results returned by f :
[| f a.(0); f a.(1); ...; f a.(length a - 1) |].

val for_all : ('a -> bool) -> 'a array -> bool

for_all f [|a1; ...; an|] checks if all elements of the array satisfy the predicate f.
That is, it returns (f a1) && (f a2) && ... && (f an).

1. Sources : https://ocaml.org/manual/5.2/api/Array.html, https://ocaml.org/manual/5.2/api/List.html

et https://ocaml.org/manual/5.2/api/Queue.html

page 11 sur 12

val exists : ('a -> bool) -> 'a array -> bool

exists f [|a1; ...; an|] checks if at least one element of the array satisĄes the predicate f.
That is, it returns (f a1) || (f a2) || ... || (f an).

Extraits du module List pour manipuler des listes

val length : 'a list -> int

Return the length (number of elements) of the given list.

val hd : 'a list -> 'a

Return the Ąrst element of the given list.

val tl : 'a list -> 'a list

Return the given list without its Ąrst element.

val rev : 'a list -> 'a list

List reversal.

val iter : ('a -> unit) -> 'a list -> unit

iter f [a1; ...; an] applies function f in turn to [a1; ...; an]. It is equivalent to f a1; f a2; ...; f

an.

val map : ('a -> 'b) -> 'a list -> 'b list

map f [a1; ...; an] applies function f to a1, ..., an, and builds the list [f a1; ...; f an] with the
results returned by f.

val fold_left : ('acc -> 'a -> 'acc) -> 'acc -> 'a list -> 'acc

fold_left f init [b1; ...; bn] is f (... (f (f init b1) b2) ...) bn.

val for_all : ('a -> bool) -> 'a list -> bool

for_all f [a1; ...; an] checks if all elements of the list satisfy the predicate f.
That is, it returns (f a1) && (f a2) && ... && (f an) for a non-empty list and true if the list is empty.

val exists : ('a -> bool) -> 'a list -> bool

exists f [a1; ...; an] checks if at least one element of the list satisĄes the predicate f.
That is, it returns (f a1) || (f a2) || ... || (f an) for a non-empty list and false if the list is empty.

val mem : 'a -> 'a list -> bool

mem a set is true if and only if a is equal to an element of set.

Extraits concernant le module Queue pour manipuler des files

val create : unit -> 'a t

Return a new queue, initially empty.

val push : 'a -> 'a t -> unit

push x q adds the element x at the end of the queue q.

val pop : 'a t -> 'a

pop q removes and returns the Ąrst element in queue q, or raises Queue.Empty if the queue is empty.

val is_empty : 'a t -> bool

Return true if the given queue is empty, false otherwise.

Fin du corrigé

page 12 sur 12

