Concours CPGE EPITA-IPSA-ESME
76 points |
2025

Corrigé de I'épreuve de Mathématiques PT - TSI

B Exercice : Racine carrée d’une matrice 14 points

Notons M3(R) I'ensemble des matrices carrées de taille 3 x 3 a coefficients réels. Considérons la
matrice suivante :

2 -1 -1
A=|-1 2 1 EMg(R).
-1 1 2

1) Justifier que la matrice A est diagonalisable sur R. (2 points)

Corrigé. La matrice A est symétrique et a coefficients réels donc d’aprés le théoréme spectral,

A est diagonalisable sur R.

2) Déterminer les valeurs propres de A. Que peut-on dire de ses sous-espaces propres? (3 points)

Corrigé. Calculons le polyn6me caractéristique de la matrice A :

X-2 1 1 X-2 0 1 X-2 0 1
X)) =1 x-2 -1 - 1 X-1 -1 — 2 0 X3
1 1 X -G o x xRl X x -2
- —a-xf-2 ! = (X - 1)[(X ~2)(X ~3) 2] = (X ~1)(X> ~5X +4)

dev. 2¢me col. 2 X -3

= (X - 13X —4).

Donc :

Sp(A) = {1,4}.|

Puisque A est symétrique et a coefficients réels, alors d’apres le cours :

les espaces propres F;(A) et E4(A) sont orthogonaux.

3) La matrice A est-elle inversible ? (1 point)

Corrigé. Puisque 0 n’est pas valeur propre de A, alors :

la matrice A est inversible. |

4) Déterminer une matrice diagonale D € M3(R) et une matrice orthogonale P € M3(R) telle que :
A=PDP .
(4 points)

Corrigé. Puisque A est diagonalisable sur R, alors dim(E1(A)) = 2 et dim(E4(A)) = 1 donc E;(A)
est une plan vectoriel et E4(A) un droite vectorielle. On a :
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-2 -1 -1

A—4l3=|-1 -2 1
-1 1 =2
1 1
donc le vecteur unitaire e; = 7 —1 | dirige la droite vectorielle E4(A). Puisque E1(A) L E4(A),
-1
1
1 . - N s
on peut poser e; = 7 1 | qui est un vecteur unitaire et orthogonale a e;, donc appartenant a
0
1 1
E1(A). On pose ensuite e3 = e; A ey = 7 —1 ] qui est un vecteur unitaire et orthogonal a e,
2

donc appartient & £ (A). La famille (e1, e2, e3) est une base orthonormée de R? formées de vecteurs
propres pour A. En notant :

I
3 V2 V6
Vi ovE Ve 100
P=|-—% —= ——=| e D=[01 0
V3 V2 V6
00 1
1 . 2
V3 V6

on adonc A = PDP~!. De plus, la matrice P est une matrice de passage entre deux bases or-
thonormées : la base canonique de R? et la base (e, ez, e3); donc P est une matrice orthogonale.

5) Déterminer une matrice diagonale A € M;3(R) vérifiant : A% = D. (2 points)

Corrigé. Par exemple, la matrice diagonale :

2 00
A=10 1 0
0 01
vérifie A% = D donc A convient.
6) En déduire une matrice M € M3(R) vérifiant : M? = A. (2 points)

Corrigé. Par exemple, la matrice :

M = PAP™!
vérifie : ,
M? = (PAP*) — PA2P~' = pppl = 4,

donc M convient.
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B Probléeme : La formule des compléments d’Euler 62 points

Dans ce probléme, on démontre une relation entre la fonction Gamma d’Euler et la fonction sinus. Nous I'appliquons
ensuite au calcul de I'intégrale de Gauss.

Dans tout le probléme, la lettre a désignera un réel appartenant a I'intervalle |0, 1].

Partie 1 : Calcul d’une intégrale dépendant d’un paramétre (22 points)

Considérons les intégrales suivantes :

1 1 400 1
I(a) = /0 SoTp e J@- /1 et

1) Démontrer que l'intégrale I(a) est convergente. (2 points)
Corrigé. Soit a €]0,1].

= La fonction ¢ — — est continue sur |0, 1].

1
te(1+1t)
o : . 1 1 o _ L
= On a I'’équivalent entre fonctions positives ———— ~ — et I'intégrale de Riemann —dt
to(1 4 t) 10+ to o te
est convergente car a < 1.

D’aprées le théoréme de comparaison par équivalence :

l'intégrale I(a) est convergente.

2) Déemontrer que l'intégrale J(a) est convergente. (2 points)
Corrigé. Soit a €]0,1].

. 1 .
» La fonction t - ———— est continue sur [1, +oco].
te(1+1t)

= On a l'équivalent entre fonctions positives et lintégrale de Riemann

ta(l+1) t—too totl
+o0 1
/1 ~71 df est convergente cara +1 > 1.

D’apres le théoreme de comparaison par équivalence :

lintégrale J(a) est convergente. ‘

3) A l'aide du changement de variable v = % démontrer que J(a) = I(1 — a). (2 points)

. . 1
Corrigé. Soit a €]0, 1[. Effectuons le changement de variable u = n de classe ¢! sur [1, +oc[ dans

L 1 1 .
I'intégrale J(a). Alors t = —, donc dt = ——5 du, ce qui donne :
u u

c’est-a-dire :
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4) Soit N un entier naturel.
(a) Démontrer que, pour tout réel ¢ appartenant a [0, 1], on a :

N N+1
Z(_l)ntn _ L o (_1)N+1t7‘
o 1+¢ 1+t

Corrigé. Soient N € Nett € [0,1]. Puisque —t # 1, alorson a :

(2 points)

(2 points)

N N
nyn n 1-— (_t)N+1 1 (_t)N+1
D B
n=0 n=0
Donc :
N
1 tN+1
)= —— — (=N
D = - G0N
(b) En déduire que :
N 1 Mol 1 4N+l1-a
I — _1\n n—a _ )
(@) =>(=1) /0 0 4 (<1) /D e
n=0
Corrigé. Soit a €]0,1[. Soient N € N et t €]0, 1]. En multipliant I'égalité précédente par le réel
non nul o on obtient :
N N+1—a
1 t
Yyl — — — (] N+17.
Z:O( ) to(1+t) (=1) 1+t

En intégrant cette égalité entre 0 et 1, et en utilisant la linéarité de I'intégrale :

N . 1 . 1 1 N1 1 4N+l-a
7;)(_1) /Ot dt:/o mdt—(—l) /0 kil
= I(a)
c’est-a-dire, enisolant (a) :
I(a) = EN:(—l)" /1t"‘“dt+ (—1)N+! /1 tNH_adt
n=0 0 o 1+t

5) Démontrer que pour tout entier naturel N :

1 N+l-a 1
og/ dt < ,
0 ].+t N+2—a

1  N+1l-a

puis déterminer la valeur de lim

Corrigé. Soit a €]0, 1[. Soient N e Nett € [0,1].Onal+¢t > 1,donc:
tN+1fa
0 < - < tN+1—a
1+1¢

puis par croissance de l'intégrale :
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1 tN+1—a 1
0</ dt</ AR [
0o 14+t 0

1 fN+2—a =1 1
/ N edt = | | =
0 N+2-al,., N+2-a

1  N+1-a
t 1
0< —dt —.
0 1+t N+2—a

0, alors d’apres le théoreme d’encadrement :

Or:

donc on obtient :

Puisque
9 N+2—a No+oo

1  N+1—-a
lim / dt = 0.

i - -1)" . .
6) Vérifier que la série Z n(_a) est convergente et démontrer que sa somme vaut I(a). (2 points)

n=0 +1

Corrigé. Soit a €]0,1[. La suite ( est décroissante et converge vers 0, donc la série

n—a-+ 1>n6N
alternée :

3 =

est convergente.
n—a-+1
n=0

De plus, pour tout n € N,on a:

/1t”“ dt = I o L

0 n+l-al,,, n+l-—da

donc par passage a la limite lorsque N tend vers +oo dans I'égalité de la question 4) (b) et en utilisant
la question 5), on obtient :

+o0o
v _,
——— = I(a).
7;)n—a—i-l

)n—l

P - -1 .
7) En déduire que la série E (1+ est convergente et démontrer que sa somme vaut J(a).
n — a
n=1

(2 points)
: . . - —1)"
Corrigé. Soit a €]0,1]. On a montré dans la question 6) que pour tout b €]0, 1], la série Z (=1)

n—b+1
n=0
est convergente et que sa somme vaut I(b). En particulier, sib = 1 — a €]0, 1], on obtient que la série
—1)" . .
Z ()a est convergente et que sa somme vaut I(1 — a) c’est-a-dire, en effectuant un changement

n=0
de variable, que :

. -1 n—1
la série ) 75_1>+a est convergente et sa somme vaut I(1 — a) = J(a).
n=1
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8) En déduire que : (2 points)
S~ (=ym

+2(a—1)zm.

n=1

I(a) + J(a) = 1 !

—a

. , - —1)" —1)nt

Corrigé. Soit a €]0,1[. Puisque les séries E _ED et E = sont convergentes, alors

n+1—a n—14+a
n=0 n>1

par linéarité de la somme :

1—a

B 8 T G D G
Ha)+J(a) = +n§_:1_n+1—a+n—1+a]

= 11a+§ :<n+(1a)_n(1a)>(_l)n]

1 =
- 1—a+z
n=1

dou :
1 — (="
I(a) + J(a) = 1_a+2(a—1)zm.
n=1

On admet que I'on a la formule suivante, valable pour tout réel A n’appartenant pas a Z :

f 2"\ 7 1
n? — X2 sin(Ar) A\

n=1

oo 1 T
9) Conclure que : dt = . 3 points
) g /0 fal+0) " sin(am) (3 points)
Corrigé. Soit a €]0,1]. En appliquant la formule de I'’énoncé avec A = 1 — a qui est un réel n'appar-

tenant pas a Z, on obtient :

+o00
=y _ d :
2(a 1)nzlnz—(1—ca)2 sin((-am) 1-a

Deplus,ona:
sin (1 — a)7) = sin(m — ar) = sin(r) cos(ar) — sin(ar) cos(r) = sin(ar)

donc d’aprés la question 8), on obtient :
T

I(a) + J(a) =

sin(am)’

+00 1
Finalement, d’apres la relation de Chasles, l'intégrale / mdzt est convergente et :
0

/+OO 1 T
dt = — .
o te(141) sin(am)
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Partie 2 : La fonction Gamma d’Euler (25 points)

Considérons les intégrales suivantes :

“+o0o
Vx >0, I'(z) = / t*le~tdt
0

e—zt

400 ’
Vr >0, = — ¢
v fa(@) /0 to(1+¢t)
10) Démontrer que la fonction T" est bien définie sur 0, +oo]. (3 points)
Corrigé. Soit x > 0.
= La fonction ¢ — t*~le~! est continue sur ]0, +oc[. Il y a deux intégrales a étudier :

1 400
Iy (z) ::/ t"le7tdt et Ty(x) ::/ t*le~tde,
0 1

- : . 1 . : !
= On a I'équivalent de fonctions positives : t*le=! ~ —— etlintégrale de Riemann / ——dt
t—0t+ 17T 0 tl_x

est convergente (car 1 — = < 1), donc d’aprés le théoréme de comparaison par équivalence,
I'intégrale I'; (x) est convergente.

1 . p
= Onat®ltet = of = )car par croissance comparee :
t—+o0 12

tExt et =¢"tle™ 0
t—-+o0
et la fonction positive ¢ — o) est intégrable sur [1, 00|, donc d’aprés le théoréme de comparai-
son pour les petits o, I'intégrale I'y(x) est convergente.

Ainsi, d’aprés la relation de Chasles, l'intégrale I'(z) est convergente pour tout réel « > 0 c’est-a-dire
que :

’Ia fonction I' est bien définie sur |0, +o0|. ‘

11) (a) Démontrer que la fonction f, est continue sur [0, +oc| et préciser la valeur de f,(0). (3 points)
—xt
Corrigé. Soit a €]0,1[. La fonction ¢, : Ry x R — R definie par ¢, : (x,t) — ta(elft) vérifie
les hypothéses suivantes.
= Pour tout ¢ > 0, la fonction = — ¢, (x,t) est continue sur R...
= Pour tout = > 0, la fonction ¢t — ¢, (x, t) est continue sur R .

= On a la majoration :

. 1
V(z,t) e Ry xRY,  |pa(w,t)]| < )

et la fonction ¢ — — est continue, indépendante de z et intégrable sur |0, +oco[ d’aprés

1
ta(14t)

la question 9).
D’aprées le théoréme de continuité pour les intégrales a paramétres :

’ la fonction f,, est continue sur [0, +ool. ‘

En particulier, la fonction f, est continue en 0 donc d’aprés la question 9) :

oo 1 7r
fa(0) = /0 te(1+t) d = sin(arm)’
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(b) Soient a €]0,1[ et (o, ) € R? tel que 0 < o < 3. Démontrer que la fonction f, est de classe ¢

sur [a, ).
En déduire que la fonction f, est de classe ¢ sur ]0,+oo[. On précisera I'expression de sa
dérivée avec le symbole intégrale. (4 points)

Corrigé. Soient a €]0,1[ et (o, 8) € R% tel que 0 < a < B. La fonction ¢, : [a, 8] x R — R

—xt
te(1+1t)
= Pour tout ¢ > 0, la fonction x + ¢, (z,t) est de classe € sur [a, A].

= Pour tout x € [o, f], la fonction ¢t — ¢4 (x,t) est continue et intégrable sur R*. d’apres ce qui
a été fait dans la question 11) (a).

définie par ¢, : (z,t) — vérifie les hypothéses suivantes.

—xt

Jpq

e
= Pour tout z € [a, 8], la fonction t — )=
z € la.f] T A T sy

est continue sur |0, 4-o0].

= On a la majoration :

0pq
ox

V(z,t) € [a, B] x RY, ' (:U,t)‘ < et

De plus, la fonction ¢ ~ t'~%e~°! est continue sur [0, +oc[, indépendante de = et on a

1 . .
tl=te=t = o <2> donc la fonction ¢ — t! =%~ est intégrable sur [0, +o0].
t—>+00 t
D’apres le théoreme de dérivabilité d’'une intégrale a parametre :
) 1 , +oo e—xt
la fonction f, est de classe €" sur [a, 5] et Vx € o, 8], fl(x) = —/ T dt.
On a donc démontré que la fonction f, est de classe ¢! sur tout segment inclus dans l'intervalle
10, +o0f, donc :
) 1 , +o0 e—mt
la fonction f, est de classe ¢ sur |0, +oo[ et Vz >0, fi(x)= —/ AT dt.
12) (a) Démontrer que pour tout réel z > 0,on a: (3 points)
I'(l—a)
fa(z) — fo(z) = i

On pourra effectuer le changement de variable u = xt dans l'intégrale f,(z) — f.(z).

Corrigé. Soient a €]0,1[ et z > 0. On a par linéarité de l'intégrale :

, - too  g—at 400 et
fala) = folz) = /O t“(1+t)dt+/0 iy

+o0 e—xt te—xt
= + dt
/0 (ta(l—l—t) t“(l—i—t))

+oo (1 —at
_ / (14t)e &t
0 te(1+1)

+o00o
= / % ¢
0

Effectuons le changement de variable u = zt de classe € sur ]0, +oc[ dans l'intégrale f,(x) —

1
fl(x). Alors t = % donc dt = . du, ce qui donne :

R s = [ () e b= [T a

x T T

=TI'(1—a)
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Ainsi,

I'l—a
Ve >0, fule) — i) = o)
(b) En déduire que pour tout réel z > 0, on a: (2 points)
I'(l—a)
0< falw) < rl—a
Corrigé. Soient a €]0,1[ etz > 0.
+o00 —xt
= On a d’'une part, par positivité de l'intégrale f,(z) = / T w > 0.
o (141
>0

» Drautre part, comme f!(z) <0, alors —f/(x) > 0, donc :

I'(l—a
fule) < fulw) — fi(@) < TUZ0
12)p) T
Ainsi,
I'(1—
Ve >0, 0< fule) < DEZY
X
(c) Déterminer ET fa(). (1 point)
- , . I'(l—a)
Corrigé. Soit a €]0,1[. Puisque 1 — a €]0, 1], Pl 0, donc P " 0.0n
en déduit d’aprés la question 12) (b) et le théoreme d encadrement que :
A fale) =0
. e ! . .
13) Démontrer que la fonction ¢ — =a est intégrable sur ]0, 4-o0]. (2 points)

Corrigé. Soit a €]0, 1[.
—t
= La fonction t — te est continue et positive sur |0, +o0[. Il y a deux intégrales a étudier :

1 -t +oo —t
(S] (S
/ —a dt et / —a dt.
ot 1t

—t

1
1
= On a I'équivalent entre fonctions positives et l'intégrale de Riemann / e dt
0

tl=a o+ ¢l-a
est convergente car 1 — a < 1. D’apres le théoreme de comparaison par équivalence, l'intégrale

1 -t —t
T . (S . s
/ e dt est convergente, c’est-a-dire que la fonction ¢ — e est intégrable sur |0, 1].
0

—t
e 1
= Ona = car par croissance Comparee
tl—a t~>+oo t2
e—t
2 x S ALYy — |
tl—a t——+o00

et la fonction positive ¢ — o) est intégrable sur [1, 00|, donc d’aprés le théoréeme de comparai-
—t
son pour les petits o, la fonction ¢ — te est intégrable sur [1, +-o0].

page 9 sur 13



Ainsi,

—t
. e .
la fonction ¢ — e est intégrable sur |0, +o00].

400
Dans la suite du probléme, on pose pour tout réel x > 0, g, (z) = / tl—_adt.
x

14) (a) Démontrer que la fonction g, est continue sur [0, +oo. (2 points)
Corrigé. Soit a €]0,1[. La fonction ¢, est bien définie sur ]0, +oo[ d’aprés la question 13). De
plus, pour tout z > 0,0n a:

. . (S . N P
Puisque la fonction ¢t — —— est continue sur |0, +oc[, alors d’aprés le théoreme fondamental

tl—a
, . T et o .
de l'analyse, la fonction = +— ﬂdt est de classe %! sur |0, +oc[, en particulier continue sur

10, +00[. Donc g, est continue sur |0, +oo]. De plus, on remarque que g,(0) = I'(1 — a), donc g,
est également continue en 0. Finalement,

’ la fonction g, est continue sur [0, +oo. ‘

(b) Démontrer que la fonction g, est de classe € sur |0, +oo[. On précisera I'expression de sa déri-
vée.
(2 points)
Corrigé. Soit a €]0,1[. On a démontré a la question 14) (a) que la fonction g, était de classe ¢
sur |0, +oc[. De plus, on a:

e—I
Vo > 0, gh(x) = ~ e

15) (a) Démontrer que pour tout réel = > 0, on a : (2 points)

e—LL‘

0 < ga(x) ~ xlfa

Corrigé. Soient a €]0,1[ et z > 0.
= Par positivité de l'intégrale, on a g,(z) > 0.
: . 11 1 1 e ! et :
» Soit A > z.Sit € [z, A],alors - < —, donc — < ——, donc — < ——. Par croissance
t €T tl—a xl—a tl—a ml—a

de l'intégrale, on obtient :

A —t A —t A —x —A
e e 1 e —e

/ . dtg/ — dt = — / e tdt = ————.
e U7 z O T ), T

Par passage a la limite dans l'inégalité précédente lorsque A tend vers +oc, on obtient :

e X
xl—a :

ga(fl:) <

On a donc démontré que :

e—iE

Ve >0, 0<gq(z)<

xl—a'
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(b) Déterminer lim g, (z). (1 point)

T—r—+00

Corrigé. Soita €]0,1[. Comme 1 —a > 0, alors lim
r—+ooxt—a

= 0. On en déduit que :

—x

e e 1

=e " — 0x0=0.
rl—a rl—a 10

D’apres le théoréme d’encadrement,

JHm go(z) = 0.
Partie 3 : La formule des compléments (11 points)
Considérons 'équation différentielle suivante :
B ves0, g @)= 0
16) Déterminer 'ensemble des solutions de I'équation homogéne associée a (F). (1 point)

Corrigé. Les solutions de I'équation homogénes associée a (E) sont les fonctions y :]0, +0o0[— R de
la forme :

’V:z:>0, y(z) = Ne”, /\GR.‘

. . 10,400 — . -
17) Démontrer que la fonction A, : { . s T(1 — a)e?ga(z) est une solution particuliere de (E).
(2 points)
Corrigé. Soienta €]0,1[etxz >0.0na:
ha(z) —ho(x) = T(1—a)e’ga(x) —T(1 - a)(e"ga(@) + €"gy(2))
= —T(1-a)e"gy(2)
x e
= —-T(1-a)e <_x1—a>
I'(l—a)
= rl-a :
Ainsi,
la fonction h,, est une solution particuliere de (E). ‘
18) Montrer qu’il existe une constante réelle \ telle que : (2 points)

Ve >0, fo(z) = Ae® + ha(2).

Corrigé. Soit a €]0,1[. D’apres le cours, les solutions de (E) sont exactement les fonctions de la
forme y;, +y, ob y;, : R — R est une solution de I'équation homogeéne associée a (F) ety, : R} — R
une solution particuliere. D’aprés les question 16) et 17), les solutions de (FE) sont exactement les
fonctions de la forme :

x> Ae” + he(x), A eR.

Or d’apres la question 12) (a), la fonction f, est une solution de (E), donc :

TAER, V>0, ful@)= A"+ ha(z).|
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19) Conclure que : (2 points)
Ve >0, fa('r) = ha(x)'

On pourra isoler \ et considérer la limite en +o00 dans I'égalité précédente.

Corrigé. Soit a €]0, 1[. Soit A € R tel que pour tout > 0 :

fa(z) = Xe® + hy(x).
On obtient :
A= (fa(z) = ha(x))e™ (%)
= D’une part d’apres la question 12) (c), on a f,(z) PRy 0.

= D’autre part, d’aprés la question 15) (a), on trouve :

I'(l—a)

Ve >0, 0<ha(e) < —

donc d’aprés le théoreme d’encadrement, h,(z) e 0.
Par conséquent, on obtient par passage a la limite dans I'égalité (%) lorsque = tend vers +oc :
A=(0-0)x0=0

dou :

Vo >0, fa(@) = ha(2).|

20) Déduire de la question précédente que : (2 points)
+oo +oo ,—t
/ 1dt—I‘(1—a)/ ° _ar.
0 ta(t +1) 0 tl-a

Corrigé. Soit a €]0,1[. D’apres les questions 11) (a) et 14) (a), les fonctions f, et g, (et donc h,)

sont continues en 0. On obtient donc par passage a la limite dans I'égalité de la question 19) lorsque
x tend vers 07 :

c’est-a-dire que :

400 1 “+00 e—t
/ dt:I‘(l—a)/ £ gt
0 te(1+1) 0 tl-a

21) Démontrer alors la formule des compléments : (2 points)
s
N 0,1 I'(a)I'(1 —a) = .
@ €1 L@ -a)= o
Corrigé. Soit a €]0,1[. D’aprés la question 9), on a /+OO ! dt = De plus, on re-
ge: @ B ap g ’ o te(l+t) sin(ar)’ Plus,

marque que :

too ot +o0
/ — dt = / t*le7tdt = I'(a)
o 1t 0
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ce qui donne finalement /a formule des compléments grace a la question 20) :

™

['(a)(1—-a) = sn(an)’

Partie 4 : Application au calcul de lI'intégrale de Gauss

22) Déterminer la valeur de T’ (;)

Corrigé. En appliquant la question 21) au réel a = - €]0, 1], on obtient :

1
2

() =t =

. 1
et puisque I' <2> >0, alors :

+0o0
, N ) , .
23) Démontrer quelmtegrale/ e " du est convergente et déterminer sa valeur.
0

convergente :
1 +oo e—t
r () - [
2 0o WVt
Alors t = u?, donc dt = 2u du, ce qui donne :

2

1 +00 n—u +oo
I‘<>:/ € ><2udu:2/ e du
2 0 u 0

donc :

—+00

s 4z .2

Imtegrale/ e " du est convergente
0

et d’apres la question 22) :

Fin du corrigé
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(4 points)

(2 points)

(2 points)

Corrigé. Effectuons le changement de variable v = +/t de classe ¢ sur |0, +oo[ dans l'intégrale



