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76 points

■ Exercice : Racine carrée d’une matrice 14 points

Notons M3(R) l’ensemble des matrices carrées de taille 3 × 3 à coefficients réels. Considérons la
matrice suivante :

A =





2 −1 −1
−1 2 1
−1 1 2



 ∈ M3(R).

1) Justifier que la matrice A est diagonalisable sur R. (2 points)

Corrigé. La matrice A est symétrique et à coefficients réels donc d’après le théorème spectral,

A est diagonalisable sur R.

2) Déterminer les valeurs propres de A. Que peut-on dire de ses sous-espaces propres? (3 points)

Corrigé. Calculons le polynôme caractéristique de la matrice A :

χA(X) =

∣
∣
∣
∣
∣
∣

X − 2 1 1
1 X − 2 −1
1 −1 X − 2

∣
∣
∣
∣
∣
∣

=
C2←C2−C3

∣
∣
∣
∣
∣
∣

X − 2 0 1
1 X − 1 −1
1 1−X X − 2

∣
∣
∣
∣
∣
∣

=
L2←L2+L3

∣
∣
∣
∣
∣
∣

X − 2 0 1
2 0 X − 3
1 1−X X − 2

∣
∣
∣
∣
∣
∣

=
dev. 2ème col.

–(1−X)

∣
∣
∣
∣

X − 2 1
2 X − 3

∣
∣
∣
∣
= (X − 1)

[

(X − 2)(X − 3)− 2
]

= (X − 1)(X2 − 5X + 4)

= (X − 1)2(X − 4).

Donc :

Sp(A) = {1, 4}.

Puisque A est symétrique et à coefficients réels, alors d’après le cours :

les espaces propres E1(A) et E4(A) sont orthogonaux.

3) La matrice A est-elle inversible? (1 point)

Corrigé. Puisque 0 n’est pas valeur propre de A, alors :

la matrice A est inversible.

4) Déterminer une matrice diagonale D ∈ M3(R) et une matrice orthogonale P ∈ M3(R) telle que :

A = PDP−1.

(4 points)

Corrigé. Puisque A est diagonalisable sur R, alors dim
(
E1(A)

)
= 2 et dim

(
E4(A)

)
= 1 donc E1(A)

est une plan vectoriel et E4(A) un droite vectorielle. On a :
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A− 4I3 =





−2 −1 −1
−1 −2 1
−1 1 −2





donc le vecteur unitaire e1 =
1√
3





1
−1
−1



 dirige la droite vectorielle E4(A). Puisque E1(A) ⊥ E4(A),

on peut poser e2 =
1√
2





1
1
0



 qui est un vecteur unitaire et orthogonale à e1, donc appartenant à

E1(A). On pose ensuite e3 = e1 ∧ e2 =
1√
6





1
−1
2



 qui est un vecteur unitaire et orthogonal à e1,

donc appartient à E1(A). La famille (e1, e2, e3) est une base orthonormée de R
3 formées de vecteurs

propres pour A. En notant :

P =












1√
3

1√
2

1√
6

− 1√
3

1√
2

− 1√
6

− 1√
3

0
2√
6












et D =





4 0 0
0 1 0
0 0 1





on a donc A = PDP−1. De plus, la matrice P est une matrice de passage entre deux bases or-
thonormées : la base canonique de R

3 et la base (e1, e2, e3) ; donc P est une matrice orthogonale.

5) Déterminer une matrice diagonale ∆ ∈ M3(R) vérifiant : ∆2 = D. (2 points)

Corrigé. Par exemple, la matrice diagonale :

∆ =





2 0 0
0 1 0
0 0 1





vérifie ∆2 = D donc ∆ convient.

6) En déduire une matrice M ∈ M3(R) vérifiant : M2 = A. (2 points)

Corrigé. Par exemple, la matrice :

M = P∆P−1

vérifie :
M2 =

(

P∆P−1
)2

= P∆2P−1 = PDP−1 = A,

donc M convient.
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■ Problème : La formule des compléments d’Euler 62 points

Dans ce problème, on démontre une relation entre la fonction Gamma d’Euler et la fonction sinus. Nous l’appliquons

ensuite au calcul de l’intégrale de Gauss.

Dans tout le problème, la lettre a désignera un réel appartenant à l’intervalle ]0, 1[.

Partie 1 : Calcul d’une intégrale dépendant d’un paramètre (22 points)

Considérons les intégrales suivantes :

I(a) =

∫ 1

0

1

ta(1 + t)
dt et J(a) =

∫ +∞

1

1

ta(1 + t)
dt.

1) Démontrer que l’intégrale I(a) est convergente. (2 points)

Corrigé. Soit a ∈]0, 1[.

• La fonction t 7→ 1

ta(1 + t)
est continue sur ]0, 1].

• On a l’équivalent entre fonctions positives
1

ta(1 + t)
∼

t→0+

1

ta
, et l’intégrale de Riemann

∫ 1

0

1

ta
dt

est convergente car a < 1.

D’après le théorème de comparaison par équivalence :

l’intégrale I(a) est convergente.

2) Démontrer que l’intégrale J(a) est convergente. (2 points)

Corrigé. Soit a ∈]0, 1[.

• La fonction t 7→ 1

ta(1 + t)
est continue sur [1,+∞[.

• On a l’équivalent entre fonctions positives
1

ta(1 + t)
∼

t→+∞

1

ta+1
et l’intégrale de Riemann

∫ +∞

1

1

ta+1
dt est convergente car a+ 1 > 1.

D’après le théorème de comparaison par équivalence :

l’intégrale J(a) est convergente.

3) À l’aide du changement de variable u =
1

t
, démontrer que J(a) = I(1− a). (2 points)

Corrigé. Soit a ∈]0, 1[. Effectuons le changement de variable u =
1

t
de classe C 1 sur [1,+∞[ dans

l’intégrale J(a). Alors t =
1

u
, donc dt = − 1

u2
du, ce qui donne :

J(a) =

∫ 0

1

1

u−a(1 + u−1)
×− 1

u2
du =

∫ 1

0

1

u1−a(u+ 1)
du

c’est-à-dire :

J(a) = I(1− a).
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4) Soit N un entier naturel.

(a) Démontrer que, pour tout réel t appartenant à [0, 1], on a : (2 points)

N∑

n=0

(−1)ntn =
1

1 + t
− (−1)N+1 t

N+1

1 + t
.

Corrigé. Soient N ∈ N et t ∈ [0, 1]. Puisque −t ̸= 1, alors on a :

N∑

n=0

(−1)ntn =
N∑

n=0

(−t)n =
1− (−t)N+1

1 + t
=

1

1 + t
− (−t)N+1

1 + t
.

Donc :

N∑

n=0

(−1)ntn =
1

1 + t
− (−1)N+1 t

N+1

1 + t
.

(b) En déduire que : (2 points)

I(a) =
N∑

n=0

(−1)n
∫ 1

0
tn−adt+ (−1)N+1

∫ 1

0

tN+1−a

1 + t
dt.

Corrigé. Soit a ∈]0, 1[. Soient N ∈ N et t ∈]0, 1]. En multipliant l’égalité précédente par le réel

non nul
1

ta
, on obtient :

N∑

n=0

(−1)ntn−a =
1

ta(1 + t)
− (−1)N+1 t

N+1−a

1 + t
.

En intégrant cette égalité entre 0 et 1, et en utilisant la linéarité de l’intégrale :

N∑

n=0

(−1)n
∫ 1

0
tn−a dt =

∫ 1

0

1

ta(1 + t)
dt

︸ ︷︷ ︸

= I(a)

− (−1)N+1

∫ 1

0

tN+1−a

1 + t
dt.

c’est-à-dire, en isolant I(a) :

I(a) =
N∑

n=0

(−1)n
∫ 1

0
tn−adt+ (−1)N+1

∫ 1

0

tN+1−a

1 + t
dt.

5) Démontrer que pour tout entier naturel N : (3 points)

0 ⩽

∫ 1

0

tN+1−a

1 + t
dt ⩽

1

N + 2− a
,

puis déterminer la valeur de lim
N→+∞

∫ 1

0

tN+1−a

1 + t
dt.

Corrigé. Soit a ∈]0, 1[. Soient N ∈ N et t ∈ [0, 1]. On a 1 + t ⩾ 1, donc :

0 ⩽
tN+1−a

1 + t
⩽ tN+1−a

puis par croissance de l’intégrale :
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0 ⩽

∫ 1

0

tN+1−a

1 + t
dt ⩽

∫ 1

0
tN+1−a dt.

Or :
∫ 1

0
tN+1−a dt =

[
tN+2−a

N + 2− a

]t=1

t=0

=
1

N + 2− a
,

donc on obtient :

0 ⩽

∫ 1

0

tN+1−a

1 + t
dt ⩽

1

N + 2− a
.

Puisque
1

N + 2− a
−−−−−→
N→+∞

0, alors d’après le théorème d’encadrement :

lim
N→+∞

∫ 1

0

tN+1−a

1 + t
dt = 0.

6) Vérifier que la série
∑

n⩾0

(−1)n

n− a+ 1
est convergente et démontrer que sa somme vaut I(a). (2 points)

Corrigé. Soit a ∈]0, 1[. La suite
(

1

n− a+ 1

)

n∈N

est décroissante et converge vers 0, donc la série

alternée :

∑

n⩾0

(−1)n

n− a+ 1
est convergente.

De plus, pour tout n ∈ N, on a :

∫ 1

0
tn−a dt =

[
tn+1−a

n+ 1− a

]t=1

t=0

=
1

n+ 1− a
,

donc par passage à la limite lorsque N tend vers +∞ dans l’égalité de la question 4) (b) et en utilisant
la question 5), on obtient :

+∞∑

n=0

(−1)n

n− a+ 1
= I(a).

7) En déduire que la série
∑

n⩾1

(−1)n−1

n− 1 + a
est convergente et démontrer que sa somme vaut J(a).

o (2 points)

Corrigé. Soit a ∈]0, 1[. On a montré dans la question 6) que pour tout b ∈]0, 1], la série
∑

n⩾0

(−1)n

n− b+ 1

est convergente et que sa somme vaut I(b). En particulier, si b = 1− a ∈]0, 1[, on obtient que la série
∑

n⩾0

(−1)n

n+ a
est convergente et que sa somme vaut I(1− a) c’est-à-dire, en effectuant un changement

de variable, que :

la série
∑

n⩾1

(−1)n−1

n− 1 + a
est convergente et sa somme vaut I(1− a) = J(a).
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8) En déduire que : (2 points)

I(a) + J(a) =
1

1− a
+ 2(a− 1)

+∞∑

n=1

(−1)n

n2 − (1− a)2
.

Corrigé. Soit a ∈]0, 1[. Puisque les séries
∑

n⩾0

(−1)n

n+ 1− a
et

∑

n⩾1

(−1)n−1

n− 1 + a
sont convergentes, alors

par linéarité de la somme :

I(a) + J(a) =
1

1− a
+

+∞∑

n=1

[
(−1)n

n+ 1− a
+

(−1)n−1

n− 1 + a

]

=
1

1− a
+

+∞∑

n=1

[(
1

n+ (1− a)
− 1

n− (1− a)

)

(−1)n
]

=
1

1− a
+

+∞∑

n=1

[
n− (1− a)− n− (1− a)

n2 − (1− a)2
(−1)n

]

d’où :

I(a) + J(a) =
1

1− a
+ 2(a− 1)

+∞∑

n=1

(−1)n

n2 − (1− a)2
.

On admet que l’on a la formule suivante, valable pour tout réel λ n’appartenant pas à Z :

+∞∑

n=1

2(−1)n−1λ

n2 − λ2
=

π

sin(λπ)
− 1

λ
.

9) Conclure que :
∫ +∞

0

1

ta(1 + t)
dt =

π

sin(aπ)
. (3 points)

Corrigé. Soit a ∈]0, 1[. En appliquant la formule de l’énoncé avec λ = 1 − a qui est un réel n’appar-
tenant pas à Z, on obtient :

2(a− 1)

+∞∑

n=1

(−1)n

n2 − (1− a)2
=

π

sin
(
(1− a)π

) − 1

1− a
.

De plus, on a :

sin
(
(1− a)π

)
= sin(π − aπ) = sin(π) cos(aπ)− sin(aπ) cos(π) = sin(aπ)

donc d’après la question 8), on obtient :

I(a) + J(a) =
π

sin(aπ)
.

Finalement, d’après la relation de Chasles, l’intégrale
∫ +∞

0

1

ta(1 + t)
dt est convergente et :

∫ +∞

0

1

ta(1 + t)
dt =

π

sin(aπ)
.
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Partie 2 : La fonction Gamma d’Euler (25 points)

Considérons les intégrales suivantes :







∀x > 0, Γ(x) =

∫ +∞

0
tx−1e−tdt

∀x ⩾ 0, fa(x) =

∫ +∞

0

e−xt

ta(1 + t)
dt

.

10) Démontrer que la fonction Γ est bien définie sur ]0,+∞[. (3 points)

Corrigé. Soit x > 0.

• La fonction t 7→ tx−1e−t est continue sur ]0,+∞[. Il y a deux intégrales à étudier :

Γ1(x) :=

∫ 1

0
tx−1e−tdt et Γ2(x) :=

∫ +∞

1
tx−1e−tdt.

• On a l’équivalent de fonctions positives : tx−1e−t ∼
t→0+

1

t1−x
et l’intégrale de Riemann

∫ 1

0

1

t1−x
dt

est convergente (car 1 − x < 1), donc d’après le théorème de comparaison par équivalence,
l’intégrale Γ1(x) est convergente.

• On a tx−1e−t =
t→+∞

o

(
1

t2

)

car par croissance comparée :

t2 × tx−1e−t = tx+1e−t −−−−→
t→+∞

0

et la fonction positive t 7→ 1

t2
est intégrable sur [1,+∞[, donc d’après le théorème de comparai-

son pour les petits o, l’intégrale Γ2(x) est convergente.

Ainsi, d’après la relation de Chasles, l’intégrale Γ(x) est convergente pour tout réel x > 0 c’est-à-dire
que :

la fonction Γ est bien définie sur ]0,+∞[.

11) (a) Démontrer que la fonction fa est continue sur [0,+∞[ et préciser la valeur de fa(0). (3 points)

Corrigé. Soit a ∈]0, 1[. La fonction ϕa : R+ × R
∗

+ → R définie par ϕa : (x, t) 7→ e−xt

ta(1 + t)
vérifie

les hypothèses suivantes.

• Pour tout t > 0, la fonction x 7→ ϕa(x, t) est continue sur R+.

• Pour tout x ⩾ 0, la fonction t 7→ ϕa(x, t) est continue sur R∗+.

• On a la majoration :

∀(x, t) ∈ R+ × R
∗

+,
∣
∣ϕa(x, t)

∣
∣ ⩽

1

ta(1 + t)

et la fonction t 7→ 1

ta(1 + t)
est continue, indépendante de x et intégrable sur ]0,+∞[ d’après

la question 9).

D’après le théorème de continuité pour les intégrales à paramètres :

la fonction fa est continue sur [0,+∞[.

En particulier, la fonction fa est continue en 0 donc d’après la question 9) :

fa(0) =

∫ +∞

0

1

ta(1 + t)
dt =

π

sin(aπ)
.

o
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(b) Soient a ∈]0, 1[ et (α, β) ∈ R
2 tel que 0 < α < β. Démontrer que la fonction fa est de classe C 1

sur [α, β].
En déduire que la fonction fa est de classe C 1 sur ]0,+∞[. On précisera l’expression de sa
dérivée avec le symbole intégrale. (4 points)

Corrigé. Soient a ∈]0, 1[ et (α, β) ∈ R
2 tel que 0 < α < β. La fonction ϕa : [α, β] × R

∗

+ → R

définie par ϕa : (x, t) 7→ e−xt

ta(1 + t)
vérifie les hypothèses suivantes.

• Pour tout t > 0, la fonction x 7→ ϕa(x, t) est de classe C 1 sur [α, β].

• Pour tout x ∈ [α, β], la fonction t 7→ ϕa(x, t) est continue et intégrable sur R∗+ d’après ce qui
a été fait dans la question 11) (a).

• Pour tout x ∈ [α, β], la fonction t 7→ ∂ϕa

∂x
(x, t) = − e−xt

ta−1(1 + t)
est continue sur ]0,+∞[.

• On a la majoration :

∀(x, t) ∈ [α, β]× R
∗

+,

∣
∣
∣
∣

∂ϕa

∂x
(x, t)

∣
∣
∣
∣
⩽ t1−ae−αt.

De plus, la fonction t 7→ t1−ae−αt est continue sur [0,+∞[, indépendante de x et on a

t1−ae−αt =
t→+∞

o

(
1

t2

)

donc la fonction t 7→ t1−ae−αt est intégrable sur [0,+∞[.

D’après le théorème de dérivabilité d’une intégrale à paramètre :

la fonction fa est de classe C 1 sur [α, β] et ∀x ∈ [α, β], f ′a(x) = −
∫ +∞

0

e−xt

ta−1(1 + t)
dt.

On a donc démontré que la fonction fa est de classe C 1 sur tout segment inclus dans l’intervalle
]0,+∞[, donc :

la fonction fa est de classe C 1 sur ]0,+∞[ et ∀x > 0, f ′a(x) = −
∫ +∞

0

e−xt

ta−1(1 + t)
dt.

12) (a) Démontrer que pour tout réel x > 0, on a : (3 points)

fa(x)− f ′a(x) =
Γ(1− a)

x1−a
.

On pourra effectuer le changement de variable u = xt dans l’intégrale fa(x)− f ′a(x).

Corrigé. Soient a ∈]0, 1[ et x > 0. On a par linéarité de l’intégrale :

fa(x)− f ′a(x) =

∫ +∞

0

e−xt

ta(1 + t)
dt+

∫ +∞

0

e−xt

ta−1(1 + t)
dt

=

∫ +∞

0

(
e−xt

ta(1 + t)
+

te−xt

ta(1 + t)

)

dt

=

∫ +∞

0

(1 + t)e−xt

ta(1 + t)
dt

=

∫ +∞

0
t−ae−xt dt

Effectuons le changement de variable u = xt de classe C 1 sur ]0,+∞[ dans l’intégrale fa(x) −
f ′a(x). Alors t =

u

x
, donc dt =

1

x
du, ce qui donne :

fa(x)− f ′a(x) =

∫ +∞

0

(u

x

)
−a

e−u × 1

x
du =

1

x1−a

∫ +∞

0
u−ae−u du

︸ ︷︷ ︸

= Γ(1−a)

.
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Ainsi,

∀x > 0, fa(x)− f ′a(x) =
Γ(1− a)

x1−a
.

(b) En déduire que pour tout réel x > 0, on a : (2 points)

0 ⩽ fa(x) ⩽
Γ(1− a)

x1−a
.

Corrigé. Soient a ∈]0, 1[ et x > 0.

• On a d’une part, par positivité de l’intégrale fa(x) =

∫ +∞

0

e−xt

ta(1 + t)
︸ ︷︷ ︸

⩾ 0

dt ⩾ 0.

• D’autre part, comme f ′a(x) ⩽ 0, alors −f ′a(x) ⩾ 0, donc :

fa(x) ⩽ fa(x)− f ′a(x) ⩽
12)(b)

Γ(1− a)

x1−a
.

Ainsi,

∀x > 0, 0 ⩽ fa(x) ⩽
Γ(1− a)

x1−a
.

(c) Déterminer lim
x→+∞

fa(x). (1 point)

Corrigé. Soit a ∈]0, 1[. Puisque 1− a ∈]0, 1[, alors
1

x1−a
−−−−→
x→+∞

0, donc
Γ(1− a)

x1−a
−−−−→
x→+∞

0. On

en déduit d’après la question 12) (b) et le théorème d’encadrement que :

lim
x→+∞

fa(x) = 0.

13) Démontrer que la fonction t 7→ e−t

t1−a
est intégrable sur ]0,+∞[. (2 points)

Corrigé. Soit a ∈]0, 1[.

• La fonction t 7→ e−t

t1−a
est continue et positive sur ]0,+∞[. Il y a deux intégrales à étudier :

∫ 1

0

e−t

t1−a
dt et

∫ +∞

1

e−t

t1−a
dt.

• On a l’équivalent entre fonctions positives
e−t

t1−a
∼

t→0+

1

t1−a
et l’intégrale de Riemann

∫ 1

0

1

t1−a
dt

est convergente car 1− a < 1. D’après le théorème de comparaison par équivalence, l’intégrale
∫ 1

0

e−t

t1−a
dt est convergente, c’est-à-dire que la fonction t 7→ e−t

t1−a
est intégrable sur ]0, 1].

• On a
e−t

t1−a
=

t→+∞
o

(
1

t2

)

car par croissance comparée :

t2 × e−t

t1−a
= ta+1e−t −−−−→

t→+∞
0

et la fonction positive t 7→ 1

t2
est intégrable sur [1,+∞[, donc d’après le théorème de comparai-

son pour les petits o, la fonction t 7→ e−t

t1−a
est intégrable sur [1,+∞[.
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Ainsi,

la fonction t 7→ e−t

t1−a
est intégrable sur ]0,+∞[.

Dans la suite du problème, on pose pour tout réel x ⩾ 0, ga(x) =
∫ +∞

x

e−t

t1−a
dt.

14) (a) Démontrer que la fonction ga est continue sur [0,+∞[. (2 points)

Corrigé. Soit a ∈]0, 1[. La fonction ga est bien définie sur ]0,+∞[ d’après la question 13). De
plus, pour tout x > 0, on a :

ga(x) =

∫ +∞

0

e−t

t1−a
dt−

∫ x

0

e−t

t1−a
dt.

Puisque la fonction t 7→ e−t

t1−a
est continue sur ]0,+∞[, alors d’après le théorème fondamental

de l’analyse, la fonction x 7→
∫ x

0

e−t

t1−a
dt est de classe C 1 sur ]0,+∞[, en particulier continue sur

]0,+∞[. Donc ga est continue sur ]0,+∞[. De plus, on remarque que ga(0) = Γ(1− a), donc ga
est également continue en 0. Finalement,

la fonction ga est continue sur [0,+∞[.

(b) Démontrer que la fonction ga est de classe C 1 sur ]0,+∞[. On précisera l’expression de sa déri-
vée.
o (2 points)

Corrigé. Soit a ∈]0, 1[. On a démontré à la question 14) (a) que la fonction ga était de classe C 1

sur ]0,+∞[. De plus, on a :

∀x > 0, g′a(x) = − e−x

x1−a
.

15) (a) Démontrer que pour tout réel x > 0, on a : (2 points)

0 ⩽ ga(x) ⩽
e−x

x1−a
.

Corrigé. Soient a ∈]0, 1[ et x > 0.

• Par positivité de l’intégrale, on a ga(x) ⩾ 0.

• Soit A > x. Si t ∈ [x,A], alors
1

t
⩽

1

x
, donc

1

t1−a
⩽

1

x1−a
, donc

e−t

t1−a
⩽

e−t

x1−a
. Par croissance

de l’intégrale, on obtient :

∫ A

x

e−t

t1−a
dt ⩽

∫ A

x

e−t

x1−a
dt =

1

x1−a

∫ A

x

e−t dt =
e−x − e−A

x1−a
.

Par passage à la limite dans l’inégalité précédente lorsque A tend vers +∞, on obtient :

ga(x) ⩽
e−x

x1−a
.

On a donc démontré que :

∀x > 0, 0 ⩽ ga(x) ⩽
e−x

x1−a
.

o
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(b) Déterminer lim
x→+∞

ga(x). (1 point)

Corrigé. Soit a ∈]0, 1[. Comme 1− a > 0, alors lim
x→+∞

1

x1−a
= 0. On en déduit que :

e−x

x1−a
= e−x

1

x1−a
−−−−→
x→+∞

0× 0 = 0.

D’après le théorème d’encadrement,

lim
x→+∞

ga(x) = 0.

Partie 3 : La formule des compléments (11 points)

Considérons l’équation différentielle suivante :

(E) : ∀x > 0, y(x)− y′(x) =
Γ(1− a)

x1−a
.

16) Déterminer l’ensemble des solutions de l’équation homogène associée à (E). (1 point)

Corrigé. Les solutions de l’équation homogènes associée à (E) sont les fonctions y :]0,+∞[→ R de
la forme :

∀x > 0, y(x) = λex, λ ∈ R.

17) Démontrer que la fonction ha :

{
[0,+∞[ −→ R

x 7−→ Γ(1− a)exga(x)
est une solution particulière de (E).

o (2 points)

Corrigé. Soient a ∈]0, 1[ et x ⩾ 0. On a :

ha(x)− h′a(x) = Γ(1− a)exga(x)− Γ(1− a)
(
exga(x) + exg′a(x)

)

= −Γ(1− a)exg′a(x)

= −Γ(1− a)ex
(

− e−x

x1−a

)

=
Γ(1− a)

x1−a
.

Ainsi,

la fonction ha est une solution particulière de (E).

18) Montrer qu’il existe une constante réelle λ telle que : (2 points)

∀x > 0, fa(x) = λex + ha(x).

Corrigé. Soit a ∈]0, 1[. D’après le cours, les solutions de (E) sont exactement les fonctions de la
forme yh+yp où yh : R∗+ → R est une solution de l’équation homogène associée à (E) et yp : R∗+ → R

une solution particulière. D’après les question 16) et 17), les solutions de (E) sont exactement les
fonctions de la forme :

x 7→ λex + ha(x), λ ∈ R.

Or d’après la question 12) (a), la fonction fa est une solution de (E), donc :

∃λ ∈ R, ∀x > 0, fa(x) = λex + ha(x).
o
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19) Conclure que : (2 points)

∀x > 0, fa(x) = ha(x).

On pourra isoler λ et considérer la limite en +∞ dans l’égalité précédente.

Corrigé. Soit a ∈]0, 1[. Soit λ ∈ R tel que pour tout x > 0 :

fa(x) = λex + ha(x).

On obtient :
λ = (fa(x)− ha(x))e

−x (⋆)

• D’une part d’après la question 12) (c), on a fa(x) −−−−→
x→+∞

0.

• D’autre part, d’après la question 15) (a), on trouve :

∀x > 0, 0 ⩽ ha(x) ⩽
Γ(1− a)

x1−a
,

donc d’après le théorème d’encadrement, ha(x) −−−−→
x→+∞

0.

Par conséquent, on obtient par passage à la limite dans l’égalité (⋆) lorsque x tend vers +∞ :

λ = (0− 0)× 0 = 0

d’où :

∀x > 0, fa(x) = ha(x).

20) Déduire de la question précédente que : (2 points)

∫ +∞

0

1

ta(t+ 1)
dt = Γ(1− a)

∫ +∞

0

e−t

t1−a
dt.

Corrigé. Soit a ∈]0, 1[. D’après les questions 11) (a) et 14) (a), les fonctions fa et ga (et donc ha)
sont continues en 0. On obtient donc par passage à la limite dans l’égalité de la question 19) lorsque
x tend vers 0+ :

fa(0) = ha(0)

c’est-à-dire que :

∫ +∞

0

1

ta(1 + t)
dt = Γ(1− a)

∫ +∞

0

e−t

t1−a
dt.

21) Démontrer alors la formule des compléments : (2 points)

∀a ∈]0, 1[, Γ(a)Γ(1− a) =
π

sin(aπ)
.

Corrigé. Soit a ∈]0, 1[. D’après la question 9), on a
∫ +∞

0

1

ta(1 + t)
dt =

π

sin(aπ)
. De plus, on re-

marque que :
∫ +∞

0

e−t

t1−a
dt =

∫ +∞

0
ta−1e−t dt = Γ(a)
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ce qui donne finalement la formule des compléments grâce à la question 20) :

Γ(a)Γ(1− a) =
π

sin(aπ)
.

Partie 4 : Application au calcul de l’intégrale de Gauss (4 points)

22) Déterminer la valeur de Γ

(
1

2

)

. (2 points)

Corrigé. En appliquant la question 21) au réel a =
1

2
∈]0, 1[, on obtient :

Γ

(
1

2

)2

=
π

sin(π/2)
= π

et puisque Γ

(
1

2

)

⩾ 0, alors :

Γ

(
1

2

)

=
√
π.

23) Démontrer que l’intégrale
∫ +∞

0
e−u

2

du est convergente et déterminer sa valeur. (2 points)

Corrigé. Effectuons le changement de variable u =
√
t de classe C 1 sur ]0,+∞[ dans l’intégrale

convergente :

Γ

(
1

2

)

=

∫ +∞

0

e−t√
t

dt.

Alors t = u2, donc dt = 2u du, ce qui donne :

Γ

(
1

2

)

=

∫ +∞

0

e−u
2

u
× 2u du = 2

∫ +∞

0
e−u

2

du

donc :

l’intégrale
∫ +∞

0
e−u

2

du est convergente

et d’après la question 22) :

∫ +∞

0
e−u

2

du =
1

2
Γ

(
1

2

)

=

√
π

2
.

Fin du corrigé
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