Exercice 1 - 13pts

Q1. [1pt] f est bornée sur R, donc Vo € R, |f(z)| < || f]loo-
Donc Vz € R, Vn € N, X" f(z 4+ na)| < ||f|loo| A"
Comme |A| < 1, on en déduit que Y A" f(x + na) converge simplement sur R.

Q2. (a) [1pt] La majoration de Q1. prouve la convergence normale, donc uniforme, de > A" f(x + na)
sur R.
Comme = — A" f(x + na) est continue sur R pour tout n € N, on en déduit que F' est continue
sur R.

(b) [1pt] De plus, Vn € N, ll)rll X' f(x + na) = A"

Le théoréme de double limite nous donne : lim F(z ZE)\" =

car |A| < 1.
T—r+00

Q3. [1pt] La fonction nulle est dans L.
Soient & € Ret f,g € L. On note Ky et K, des réels tels que Vz,y € R, |f(z) — f(y)| < K¢z —y| et

lg(z) — g(y)| < Kglz —y[. On a alors |(a.f + g)(z) — (a.f + 9) ()| < || f(x) — f(y)| + [g(x) — g(v)]
donc a.f +¢g € L.

Q4. [1pt] En prenant y =0 on a Vz € R, |f(z) — f(0)| < K¢|z| donc |f(x)] < Ky|z| + |£(0)].

Q5. [1pt] On a Vz € R, Vn € N, |\"f(x + na)| = |A\|"|f(z + na)| < |\["(Alx + na| + B).
Comme |A| < 1 on en déduit par croissances comparées que |A" f(x + na)| = o(1/n?) et donc F

est définie sur R.

+oo +oo
Q6. (a) [2pts] [F(x) — F(y)| < Y A"|f(@+na) = f(y+na)| < Ksle—y| Y A" = K‘Alx—yl donc
n=0

FelLl. N 4 I
F(z)—AF(z+a) Z)\”f r+na) Z)\”“f(a:—kna—i-a) = ZA"f(m%—na)—ZA”f(m%—na).
n=0 n=0 n=1

Donc F(z) — )\F(x—i—a) f(x).

(b) [2pts] On a alors F'(z)—A.F(z+a) = G(xz)—\.G(z+a) donc F(z)—G(x
C’est vrai pour tout = € R donc en itérant on aVn € N, F(x)—G(z) =
Avec Q4. qui peut étre utilisée avec I’ et G on a :
|F(z) — G(2)| < [A™.(|F(z + na)| + |G(z + na)|) < [A|".(Ap|z + na| + Bp + Ac|z + na| + Bg
Les croissances comparées donnent donc lorsque n — 400 : |F(z) — G(z)| < 0 et donc F(x)

G(z).

) = A\ (F(z4a)—G(z+a)).
A" (F(z+na)—G(z+na)).
)

Q7. [1pt] Il est évident que f € L. On a : F(x Z A=

Q8. [2pts] cos est 1-lipschitzienne d’aprés I’ 1negahte des acroissements finis.

+00
On a : F ZA”COSJE—}—na (Z}\n zx—i—na)

n=0
—+o0 +o0 . » . o
. . . 1T iT(1 _ e za) el _ )\ez(:p a))
Or : A" i(z+na) _ iz Ael@ n_ (S _ e ( ‘ _ .
T ngo (§] € ngo( € ) 1 — \eta |1_)\em|2 1+)\2—2)\COS(CL)

cos(z) — Acos(z — a)

D F(x) =
onc : F(z) 14 A2 —2Xcos(a)




Exercice 2 - 25pts
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+oo
[1pt] La famille ({X = n})nen U ({X = 4+00}) est un sce donc Z]P’(X =n)+PX =+0) = 1.
n=0
[1pt] On note X la variable aléatoire telle que, pour tout n € N, X = n lorsqu’on obtient le premier

« pile » au lancer de rang n, et X = +o00 lorsqu’on n’obtient jamais « pile ».
+oo
. 1
Alors on sait que X < G(1/2) donc P(X = +o00) =1 — Z on = 0.
n=1

[2pts] La probabilité d’obtenir PPF sur un groupe de 3 lancers est égale a 1/8.

Comme les groupes de 3 lancers sont disjoints leurs résultats sont indépendants.

"1
On sait donc que Y + 1 < G(1/8) et donc P(Y = n) = <;) 5

+oo n
1
OnaalorsIF’(Y——i—oo)—l—Z(;) - =0.
n=0

+0o0o

[4pts] Comme P(Z = +00) = 0, la formule des probabilités totales donne : P(Ay) = ZP(Ak N{Z =
=0

J})-

* Comme {Z =k} C Ay on a P(Ax N{Z =k}) =P(Z = k) (vrai au moins si k > 2).

*OnaAr C{Z<k}doncsij>konalP(A,N{Z =j})=0 (vrai au moins si k > 2).

* AyN{Z=k—1} ={Z =k — 1} N P, et comme ces deux derniers sont indépendants :

1
P(A.N{Z=k—-1}) = i]P)(Z =k — 1) (vrai au moins si k > 3).
*S1j<k—2 ArnN{Z=j}={Z=7}N Py_1N Py et comme ces trois derniers sont indépendants :
1
P(A,N{Z =j}) = 1]?(2 = j) (vrai au moins si k > 4).
On a donc pour k >4 :

k—2
IP’(Ak):iz;P(Z:jH—;P(Z:k:—l)—HP(Z:k:):i]P’(ng:—2)+;P(Z:k:—l)—HP(Z:k:)

[1pt] P(Ax) = 1/4 et la formule est valide si k =3 ou 2. Comme P(Z <k—-2)=1-P(Z>k—1)on
a la formule demandée.

[3pts] En sommant pour & allant de 2 & +00 on a que Z est d’espérance finie égale a 6.

[3pts] On sait que P(Z = k) =P(Z > k) —P(Z > k + 1) et on utilise Q13. pour obtenir la formule
demandée.

On prend ensuite ¢ € [—1, 1], on mutiplie par t**2 des deux cotés puis on somme pour k allant de 2 &

+00.
B3 2 2 t3 12 12

On obtient : G(t) — — — — = —G(t) + 3 <G(t) 4> d’on G(t) = 49t — 42

[1pt] T représente le rang du lancer ou la partie se termine par la victoire d'un des deux joueurs.

[4pts] La famille (P,—1 N P,, F,,_1 N P, F,,) est un sce avec lequel on utilise la formule des probabilités
totales.

*{T>n+1}NP1NP,NPyy1NPyionNFEyis={X4=n+3}

* {TZn+1}an71manPn+1mPn+2an+3 :{XB :n+1}mpn+2an+3

* {T > n+1}ﬁFnﬂPn+1ﬁPn+2an+3 = {XB :n+2}ﬂFn+3

On obtient :

PH{T >n+ 1} NP1 NPrioNFruis) = P(Xa=n+3)+P{Xp=n+1}NPi2N Fui3)
+P{Xp=n+2} N Fyi3)

De plus {Xp = n+ 1}, Pyy2, Fyy3 sont indépendants, {Xp = n + 2} et F, 13 le sont aussi et c’est
aussi le cas de {T' > n+ 1}, P41, Ppt2, Frys. On obtient alors la formule souhaitée.

[2pts] On choisit le méme sce et on remarque que :
*{T>n+1}NP NP, NFyi NPpoNPrys={Xa=n+1}NP2NPyi3



Q19.

*{T>n+1}NF,_1NP,NF41NPyaNPyis=P,N{Xp=n+3}
*{T>n+1}NE,NE1NPyionNPyis=F,N{Xp=n+3}
Donc :

P{T >n+1}NF41NPanNPyi3) = P{Xa=n+1}NPanNPyi3)+P(P,N{Xp=n+3})
‘HP)(Fn N {XB =n-+ 3})

1 1
ce qui donne g]P’(TZrH—l) = 1IP(XA =n+1)+P(Xp=n+3).

[3pts] En égalisant les deux expressions on trouve que pour n > 2 :
1 1 1
P(X :n+3)+§IP’(XB :n+2)+Z]P’(XB =n+1)=P(Xp :n+3)+ZIP’(XA:n+1)

On vérifie que cette formule est valable pour n = 0 et n = 1 puis on somme pour n allant de 0 & +oo.
Comme {X4 < 400} (resp. {Xp < 4+00}) est 'union disjointe des {X4 = n} (resp. {Xp = n}) on
obtient par o-additivité :

T4+ 17TB + 171']3 =7pg+ l7TA soit 3ma = mpR.

De plus si on note E I’événement « on obtient au moins une fois la séquence PPFF PP » alors d’aprés
I'énoncé P(E) = 1 et comme F C {T < 400} on a P(T' < 400) = 1. Mais {T' < +o00} est I'union
disjointe de 1{XA < —i—o%} et {Xp < +oo} donc my +7p = 1.

Ainsi w4 = 1 et mp = —; le jeu n’est pas équitable.

4

Exercice 3 - 12pts

Q20.

Q21.

Q22.

Q23.

[2pts] x4 = X3 —4X = X(X — 2)(X + 2) est scindé a racines simples donc A est diagonalisable et
ses sous-espaces propres sont des droites vectorielles.

1 1 5
On trouve F_5(A) = Vect 0 , Eo(A) = Vect 2 et Fy(A) = Vect | | 4
-1 -1 3
-2 0 0 1 1 5
DoncsiD=|0 0 OJetP=|0 2 4| alorsP€GL3(R)et A= PDP~L.
0 0 2 -1 -1 3

[2pts] Comme x 4 est scindé & racines simples on sait que A est diagonalisable et que ses sous-espaces
propres sont des droites vectorielles.

Soit X # 0,1 une colonne propre de A et A la valeur propre associée : AX = A\ X.

Alors AMX = MAX = AMX donc MX € Ey(A) qui est une droite vectorielle. Comme X # 0, ; il
existe p € K tel que M X = uX et donc X est une colonne propre pour M.

[3pts] On note u (resp. v) 'endomorphisme de K" canoniquement associée & A (resp. M).

Comme u est diagonalisable il existe B base de K™ propre pour u.

D’apreés la question précédente c’est aussi une base propre pour v donc v est diagonalisable dans la
méme base que u.

Si on note P la matrice de passage de la base canonique a cette base de diagonalisation alors P €
GL,(K) et les matrices P~1AP et P~1M P sont diagonales.

[3pts] On reprend les notations de Q20..
Si M? = A alors AM = MA = M? donc N = P 'MP est diagonale. Comme N? = D on a

+iv2 0 0
N = 0 0 0 si K = C et N n’existe pas si K = R. Comme M — P~1MP est bijective
0 0 +V2

on en déduit qu’il y a 4 valeurs possibles de la matrice M si K = C.
Réciproquement les 4 matrices M vérifient bien M? = A donc si K = C il existe 4 racines carrées de
A. Si K =R il n’en existe aucune.



Q24. [2pts] D’aprés le cours B est orthodiagonalisable et ses valeurs propres sont positives.
On note Aj, ..., A, ses valeurs propres comptées avec leur multiplicité, D = Diag(A1,...,A\,) et
P € 0,(R) telle que B = PDPT.
Alors si on pose M = PDiag(v/A1,...,vVA) P~ on a M? = B. De plus il est évident que M est
symétrique, et elle est positive car toutes ses valeurs propres le sont.



