
Exercice 1 - 13pts

Q1. [1pt] f est bornée sur R, donc ∀x ∈ R, |f(x)| ≤ ∥f∥∞.
Donc ∀x ∈ R, ∀n ∈ N, |λnf(x+ na)| ≤ ∥f∥∞|λ|n.
Comme |λ| < 1, on en déduit que

∑

λnf(x+ na) converge simplement sur R.

Q2. (a) [1pt] La majoration de Q1. prouve la convergence normale, donc uniforme, de
∑

λnf(x + na)
sur R.
Comme x → λnf(x + na) est continue sur R pour tout n ∈ N, on en déduit que F est continue
sur R.

(b) [1pt] De plus, ∀n ∈ N, lim
x→+∞

λnf(x+ na) = ℓλn.

Le théorème de double limite nous donne : lim
x→+∞

F (x) =

+∞
∑

n=0

ℓλn =
ℓ

1− λ
car |λ| < 1.

Q3. [1pt] La fonction nulle est dans L.
Soient α ∈ R et f, g ∈ L. On note Kf et Kg des réels tels que ∀x, y ∈ R, |f(x)− f(y)| ≤ Kf |x− y| et
|g(x) − g(y)| ≤ Kg|x − y|. On a alors |(α.f + g)(x) − (α.f + g)(y)| ≤ |α||f(x) − f(y)| + |g(x) − g(y)|
donc α.f + g ∈ L.

Q4. [1pt] En prenant y = 0 on a ∀x ∈ R, |f(x)− f(0)| ≤ Kf |x| donc |f(x)| ≤ Kf |x|+ |f(0)|.
Q5. [1pt] On a ∀x ∈ R, ∀n ∈ N, |λnf(x+ na)| = |λ|n|f(x+ na)| ≤ |λ|n(A|x+ na|+B).

Comme |λ| < 1 on en déduit par croissances comparées que |λnf(x + na)| =
n→+∞

o(1/n2) et donc F

est définie sur R.

Q6. (a) [2pts] |F (x)−F (y)| ≤
+∞
∑

n=0

|λ|n|f(x+na)− f(y+na)| ≤ Kf |x− y|
+∞
∑

n=0

|λ|n =
Kf

1− |λ| |x− y| donc

F ∈ L.

F (x)−λ.F (x+a) =
+∞
∑

n=0

λnf(x+na)−
+∞
∑

n=0

λn+1f(x+na+a) =
+∞
∑

n=0

λnf(x+na)−
+∞
∑

n=1

λnf(x+na).

Donc F (x)− λ.F (x+ a) = f(x).

(b) [2pts] On a alors F (x)−λ.F (x+a) = G(x)−λ.G(x+a) donc F (x)−G(x) = λ.
(

F (x+a)−G(x+a)
)

.
C’est vrai pour tout x ∈ R donc en itérant on a ∀n ∈ N, F (x)−G(x) = λn.

(

F (x+na)−G(x+na)
)

.
Avec Q4. qui peut être utilisée avec F et G on a :
|F (x)−G(x)| ≤ |λ|n.

(

|F (x+ na)|+ |G(x+ na)|
)

≤ |λ|n.
(

AF |x+ na|+BF +AG|x+ na|+BG

)

.
Les croissances comparées donnent donc lorsque n → +∞ : |F (x) − G(x)| ≤ 0 et donc F (x) =
G(x).

Q7. [1pt] Il est évident que f ∈ L. On a : F (x) =
+∞
∑

n=0

λn =
1

1− λ
.

Q8. [2pts] cos est 1-lipschitzienne d’après l’inégalité des acroissements finis.

On a : F (x) =

+∞
∑

n=0

λn cos(x+ na) = Re

(

+∞
∑

n=0

λnei(x+na)

)

.

Or :
+∞
∑

n=0

λnei(x+na) = eix
+∞
∑

n=0

(

λeia
)n

=
eix

1− λeia
=

eix(1− λe−ia)

|1− λeia|2 =
eix − λei(x−a))

1 + λ2 − 2λ cos(a)
.

Donc : F (x) =
cos(x)− λ cos(x− a)

1 + λ2 − 2λ cos(a)
.
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Exercice 2 - 25pts

Q9. [1pt] La famille ({X = n})n∈N ∪ ({X = +∞}) est un sce donc
+∞
∑

n=0

P(X = n) + P(X = +∞) = 1.

Q10. [1pt] On note X la variable aléatoire telle que, pour tout n ∈ N, X = n lorsqu’on obtient le premier
« pile » au lancer de rang n, et X = +∞ lorsqu’on n’obtient jamais « pile ».

Alors on sait que X →֒ G(1/2) donc P(X = +∞) = 1−
+∞
∑

n=1

1

2n
= 0.

Q11. [2pts] La probabilité d’obtenir PPF sur un groupe de 3 lancers est égale à 1/8.
Comme les groupes de 3 lancers sont disjoints leurs résultats sont indépendants.

On sait donc que Y + 1 →֒ G(1/8) et donc P(Y = n) =

(

7

8

)n 1

8
.

On a alors P(Y = +∞) = 1−
+∞
∑

n=0

(

7

8

)n 1

8
= 0.

Q12. [4pts] Comme P(Z = +∞) = 0, la formule des probabilités totales donne : P(Ak) =

+∞
∑

j=0

P(Ak ∩ {Z =

j}).
⋆ Comme {Z = k} ⊆ Ak on a P(Ak ∩ {Z = k}) = P(Z = k) (vrai au moins si k ≥ 2).
⋆ On a Ak ⊆ {Z ≤ k} donc si j > k on a P(Ak ∩ {Z = j}) = 0 (vrai au moins si k ≥ 2).
⋆ Ak ∩ {Z = k − 1} = {Z = k − 1} ∩ Pk et comme ces deux derniers sont indépendants :

P(Ak ∩ {Z = k − 1}) = 1

2
P(Z = k − 1) (vrai au moins si k ≥ 3).

⋆ Si j ≤ k − 2, Ak ∩ {Z = j} = {Z = j} ∩ Pk−1 ∩ Pk et comme ces trois derniers sont indépendants :

P(Ak ∩ {Z = j}) = 1

4
P(Z = j) (vrai au moins si k ≥ 4).

On a donc pour k ≥ 4 :

P(Ak) =
1

4

k−2
∑

j=0

P(Z = j) +
1

2
P(Z = k − 1) + P(Z = k) =

1

4
P(Z ≤ k − 2) +

1

2
P(Z = k − 1) + P(Z = k)

Q13. [1pt] P(Ak) = 1/4 et la formule est valide si k = 3 ou 2. Comme P(Z ≤ k − 2) = 1− P(Z ≥ k − 1) on
a la formule demandée.

Q14. [3pts] En sommant pour k allant de 2 à +∞ on a que Z est d’espérance finie égale à 6.

Q15. [3pts] On sait que P(Z = k) = P(Z ≥ k) − P(Z ≥ k + 1) et on utilise Q13. pour obtenir la formule
demandée.
On prend ensuite t ∈ [−1, 1], on mutiplie par tk+2 des deux côtés puis on somme pour k allant de 2 à
+∞.

On obtient : G(t)− t3

8
− t2

4
=

t2

4
G(t) +

t3

8

(

G(t)− t2

4

)

d’où G(t) =
t2

4− 2t− t2
.

Q16. [1pt] T représente le rang du lancer où la partie se termine par la victoire d’un des deux joueurs.

Q17. [4pts] La famille (Pn−1∩Pn, Fn−1∩Pn, Fn) est un sce avec lequel on utilise la formule des probabilités
totales.
⋆ {T ≥ n+ 1} ∩ Pn−1 ∩ Pn ∩ Pn+1 ∩ Pn+2 ∩ Fn+3 = {XA = n+ 3}
⋆ {T ≥ n+ 1} ∩ Fn−1 ∩ Pn ∩ Pn+1 ∩ Pn+2 ∩ Fn+3 = {XB = n+ 1} ∩ Pn+2 ∩ Fn+3

⋆ {T ≥ n+ 1} ∩ Fn ∩ Pn+1 ∩ Pn+2 ∩ Fn+3 = {XB = n+ 2} ∩ Fn+3

On obtient :

P({T ≥ n+ 1} ∩ Pn+1 ∩ Pn+2 ∩ Fn+3) = P(XA = n+ 3) + P({XB = n+ 1} ∩ Pn+2 ∩ Fn+3)
+P({XB = n+ 2} ∩ Fn+3)

De plus {XB = n + 1}, Pn+2, Fn+3 sont indépendants, {XB = n + 2} et Fn+3 le sont aussi et c’est
aussi le cas de {T ≥ n+ 1}, Pn+1, Pn+2, Fn+3. On obtient alors la formule souhaitée.

Q18. [2pts] On choisit le même sce et on remarque que :
⋆ {T ≥ n+ 1} ∩ Pn−1 ∩ Pn ∩ Fn+1 ∩ Pn+2 ∩ Pn+3 = {XA = n+ 1} ∩ Pn+2 ∩ Pn+3

2



⋆ {T ≥ n+ 1} ∩ Fn−1 ∩ Pn ∩ Fn+1 ∩ Pn+2 ∩ Pn+3 = Pn ∩ {XB = n+ 3}
⋆ {T ≥ n+ 1} ∩ Fn ∩ Fn+1 ∩ Pn+2 ∩ Pn+3 = Fn ∩ {XB = n+ 3}
Donc :

P({T ≥ n+ 1} ∩ Fn+1 ∩ Pn+2 ∩ Pn+3) = P({XA = n+ 1} ∩ Pn+2 ∩ Pn+3) + P(Pn ∩ {XB = n+ 3})
+P(Fn ∩ {XB = n+ 3})

ce qui donne
1

8
P(T ≥ n+ 1) =

1

4
P(XA = n+ 1) + P(XB = n+ 3).

Q19. [3pts] En égalisant les deux expressions on trouve que pour n ≥ 2 :

P(XA = n+ 3) +
1

2
P(XB = n+ 2) +

1

4
P(XB = n+ 1) = P(XB = n+ 3) +

1

4
P(XA = n+ 1)

On vérifie que cette formule est valable pour n = 0 et n = 1 puis on somme pour n allant de 0 à +∞.
Comme {XA < +∞} (resp. {XB < +∞}) est l’union disjointe des {XA = n} (resp. {XB = n}) on
obtient par σ-additivité :

πA +
1

2
πB +

1

4
πB = πB +

1

4
πA soit 3πA = πB.

De plus si on note E l’évènement « on obtient au moins une fois la séquence PPFFPP » alors d’après
l’énoncé P(E) = 1 et comme E ⊆ {T < +∞} on a P(T < +∞) = 1. Mais {T < +∞} est l’union
disjointe de {XA < +∞} et {XB < +∞} donc πA + πB = 1.

Ainsi πA =
1

4
et πB =

3

4
; le jeu n’est pas équitable.

Exercice 3 - 12pts

Q20. [2pts] χA = X3 − 4X = X(X − 2)(X + 2) est scindé à racines simples donc A est diagonalisable et
ses sous-espaces propres sont des droites vectorielles.

On trouve E−2(A) = Vect









1
0
−1







, E0(A) = Vect









1
2
−1







 et E2(A) = Vect









5
4
3







.

Donc si D =





−2 0 0
0 0 0
0 0 2



 et P =





1 1 5
0 2 4
−1 −1 3



 alors P ∈ GL3(R) et A = PDP−1.

Q21. [2pts] Comme χA est scindé à racines simples on sait que A est diagonalisable et que ses sous-espaces
propres sont des droites vectorielles.
Soit X ̸= 0n,1 une colonne propre de A et λ la valeur propre associée : AX = λX.
Alors AMX = MAX = λMX donc MX ∈ Eλ(A) qui est une droite vectorielle. Comme X ̸= 0n,1 il
existe µ ∈ K tel que MX = µX et donc X est une colonne propre pour M .

Q22. [3pts] On note u (resp. v) l’endomorphisme de K
n canoniquement associée à A (resp. M).

Comme u est diagonalisable il existe B base de K
n propre pour u.

D’après la question précédente c’est aussi une base propre pour v donc v est diagonalisable dans la
même base que u.
Si on note P la matrice de passage de la base canonique à cette base de diagonalisation alors P ∈
GLn(K) et les matrices P−1AP et P−1MP sont diagonales.

Q23. [3pts] On reprend les notations de Q20..
Si M2 = A alors AM = MA = M3 donc N = P−1MP est diagonale. Comme N2 = D on a

N =





±i
√
2 0 0

0 0 0

0 0 ±
√
2



 si K = C et N n’existe pas si K = R. Comme M 7−→ P−1MP est bijective

on en déduit qu’il y a 4 valeurs possibles de la matrice M si K = C.
Réciproquement les 4 matrices M vérifient bien M2 = A donc si K = C il existe 4 racines carrées de
A. Si K = R il n’en existe aucune.
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Q24. [2pts] D’après le cours B est orthodiagonalisable et ses valeurs propres sont positives.
On note λ1, . . ., λn ses valeurs propres comptées avec leur multiplicité, D = Diag(λ1, . . . , λn) et
P ∈ On(R) telle que B = PDP T .
Alors si on pose M = PDiag(

√
λ1, . . . ,

√
λn)P

−1 on a M2 = B. De plus il est évident que M est
symétrique, et elle est positive car toutes ses valeurs propres le sont.
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