Concours CPGE EPITA-IPSA-ESME Corrigé de l'épreuve de Mathématiques (Option - 2h)

- 1°) Cas où la suite $k \mapsto M^k$ est constante pour $k \ge 1$
- a) Si la suite $k \mapsto M^k$ est constante pour $k \ge 1$, on a en particulier $M = M^2$ de sorte que M est alors une matrice de projection. Réciproquement, si $M = M^2$, on vérifie par récurrence immédiate que $M^k = M$ pour tout $k \ge 1$: c'est en effet vrai pour k = 1, et si l'on a $M^k = M$, alors $M^{k+1} = M^2$, et donc $M^{k+1} = M$. La suite $k \mapsto M^k$ est donc constante, égale à M, pour $k \ge 1$.
- b) Toute matrice de projection M est donc la limite d'une suite géométrique matricielle, notamment de la suite $k \mapsto M^k$ puisqu'elle est constante, égale à M, pour $k \ge 1$.
- 2°) Etude de la suite (M^k) lorsque la matrice M est orthogonale
- a) On sait qu'une matrice M est orthogonale si et seulement si elle vérifie l'égalité : $M^T M = I_N$. Pour établir que $O_N(\mathbb{R})$ est fermé, considérons une suite (M_k) de $O_N(\mathbb{R})$ convergeant vers M. Pour tout entier naturel k, on a donc $M_k^T M_k = I_N$ et :
 - l'application $M \in \mathcal{M}_N(\mathbb{R}) \mapsto M^T \in \mathcal{M}_N(\mathbb{R})$ est linéaire, donc continue. (en effet, toute application linéaire sur un espace de dimension finie est continue).
 - l'application $(A, B) \in \mathcal{M}_N^2(\mathbb{R}) \mapsto AB \in \mathcal{M}_N(\mathbb{R})$ est bilinéaire, donc continue. (en effet, toute application bilinéaire sur un produit d'espaces de dimensions finies est continue). Il résulte de ces deux arguments que : $M^T M = \lim M_k^T \lim M_k = \lim (M_k^T M_k) = I_N$. Ainsi, $M = \lim M_k$ est orthogonale, ce qui établit que $O_N(\mathbb{R})$ est fermé.

Remarque: une autre façon d'établir ceci (avec les mêmes arguments de continuité) consiste à remarquer que $O_N(\mathbb{R})$ est fermé car c'est l'image réciproque du singleton $\{I_N\}$, qui est fermé, par l'application $M \in \mathcal{M}_N(\mathbb{R}) \mapsto M^T M \in \mathcal{M}_N(\mathbb{R})$, qui est continue par composition des applications continues déjà indiquées.

b) On suppose que la suite matricielle (M^k) converge vers une matrice L.

La matrice $L = \lim M^k$ appartient à $O_N(\mathbb{R})$ d'après les deux arguments suivants :

- $O_N(\mathbb{R})$ étant un groupe est stable par produit et contient donc les matrices M^k car $M \in O_N(\mathbb{R})$.
- $O_N(\mathbb{R})$ étant fermé contient donc la limite L de sa suite convergente (M^k) .

Comme $O_N(\mathbb{R}) \subset GL_N(\mathbb{R})$, la matrice L est donc inversible

La suite (M^{k+1}) étant une suite extraite de la suite (M^k) , elle converge donc aussi vers L.

Par ailleurs, on a $M^{k+1} = M M^k = M^k M$, d'où par passage à la limite L = M L = L M. (en effet, on a déjà noté que l'application $(A, B) \in \mathcal{M}_N^2(\mathbb{R}) \mapsto AB \in \mathcal{M}_N(\mathbb{R})$ est continue).

On a donc : $(I_N - M) L = L(I_N - M) = 0$, et on obtient $M = I_N$ en multipliant l'égalité par L^{-1} . Ainsi, si la suite matricielle (M^k) avec $M \in O_N(\mathbb{R})$ converge, on a $M = I_N$ et la suite (M^k) n'est autre que la suite constante (I_N) , de sorte que $L = I_N$ aussi.

c) La seule suite géométrique matricielle convergente (M^k) où $M \in O_N(\mathbb{R})$ est la suite constante (I_N) .

- 3°) Etude de la suite (M^k) lorsque la matrice M est antisymétrique
- a) Les sous-espaces $\mathcal{A}_N(\mathbb{R})$ et $\mathcal{S}_N(\mathbb{R})$ sont des parties fermées de $\mathcal{M}_N(\mathbb{R})$, car on sait en effet que tout sous-espace de dimension finie d'un e.v.n. est toujours fermé. Un autre argument consiste à remarquer que $\mathcal{S}_N(\mathbb{R})$ est l'image réciproque du singleton $\{0\}$, qui est fermé, par l'application continue $M \in \mathcal{M}_N(\mathbb{R}) \mapsto M^T M \in \mathcal{M}_N(\mathbb{R})$. Et de même, $\mathcal{A}_N(\mathbb{R})$ est l'image réciproque du fermé $\{0\}$ par l'application continue $M \in \mathcal{M}_N(\mathbb{R}) \mapsto M^T + M \in \mathcal{M}_N(\mathbb{R})$.
- b) Comme M est antisymétrique, on a $M^T = -M$, donc pour $k \in \mathbb{N}$: $(M^k)^T = (M^T)^k = (-1)^k M^k$. Si k est pair : $(M^k)^T = M^k$ et $M^k \in \mathcal{S}_N(\mathbb{R})$, et si k est impair : $(M^k)^T = -M^k$ et $M^k \in \mathcal{A}_N(\mathbb{R})$.
- c) On suppose que la suite matricielle (M^k) converge vers une matrice L. Comme L est limite de la suite extraite (M^{2k}) , L est limite d'une suite de $S_N(\mathbb{R})$, et comme $S_N(\mathbb{R})$ est fermé, on peut affirmer que $L \in S_N(\mathbb{R})$. Comme L est limite de la suite extraite (M^{2k+1}) , L est limite d'une suite de $\mathcal{A}_N(\mathbb{R})$, et comme $\mathcal{A}_N(\mathbb{R})$ est fermé, on peut affirmer que $L \in \mathcal{A}_N(\mathbb{R})$. Ainsi, la matrice-limite L appartient à $S_N(\mathbb{R}) \cap \mathcal{A}_N(\mathbb{R})$.

On en déduit que L = 0 car $S_N(\mathbb{R}) \cap \mathcal{A}_N(\mathbb{R}) = \{0\}$. En effet, si $L \in S_N(\mathbb{R}) \cap \mathcal{A}_N(\mathbb{R})$, on a $L^T = L$ et $L^T = -L$, d'où L = 0.

- Ell clict, Si $L \in \mathcal{S}_N(\mathbb{R}) \cap \mathcal{S}_N(\mathbb{R})$, Oli a L = L ct L = -L, d od L = -L
- 4°) Etude de la suite (M^k) lorsque la matrice M est symétrique a) On sait que toute matrice symétrique réelle M diagonalise en base orthonormale. Si $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_N$ désignent ses valeurs propres (nécessairement réelles, distinctes ou non, et qu'il est donc possible de classer par ordre décroissant), il existe $P \in O_N(\mathbb{R}) \subset GL_N(\mathbb{R})$ telle que :

$$P^{-1}MP = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_N \end{pmatrix} \text{ ou } \operatorname{Diag}(\lambda_1, \lambda_2, \dots, \lambda_N).$$

Notons qu'il résulte immédiatement de cette égalité que P^{-1} M^k $P = \text{Diag}(\lambda_1^k, \lambda_2^k, \dots, \lambda_N^k)$.

b) Si la suite (M^k) converge vers L, la suite $(P^{-1} M^k P)$ converge vers $P^{-1} L P$, et la suite des matrices diagonales $(\text{Diag}(\lambda_1^k, \lambda_2^k, \dots, \lambda_N^k))$ converge donc vers $P^{-1} L P$.

Donc les suites $(\lambda_1^k), (\lambda_2^k), \dots, (\lambda_N^k)$ convergent et les valeurs propres de M sont dans]-1, 1] puisqu'une suite géométrique réelle $k \mapsto \lambda^k$ converge si et seulement si $-1 < \lambda \le 1$.

Inversement, si $\lambda_1,\,\lambda_2,\,\,\dots,\,\lambda_N$ appartiennent à l'intervalle] – 1, 1], deux cas se présentent :

- soit r = 0: les valeurs propres $\lambda_1, \lambda_2, \dots, \lambda_N$ sont de valeur absolue strictement inférieure à 1. Alors la suite $(M^k) = (P \operatorname{Diag}(\lambda_1^k, \lambda_2^k, \dots, \lambda_N^k) P^{-1})$ converge vers la matrice nulle : $P \circ P^{-1} = 0$.
- soit $r \ge 1$: 1 est valeur propre d'ordre de multiplicité r, auquel cas on a $\lambda_1 = \ldots = \lambda_r = 1$ et les autres valeurs propres $\lambda_{r+1}, \ldots, \lambda_N$ sont de valeur absolue strictement inférieure à 1.

Alors la suite $(M^k) = (P \operatorname{Diag}(\lambda_1^k, \lambda_2^k, \dots, \lambda_N^k) P^{-1})$ converge vers la matrice : $P\left(\frac{I_r \mid 0}{0 \mid 0}\right) P^{-1} = L$.

Dans ces deux cas $(r = 0 \text{ et } r \ge 1)$, on a donc : $L^2 = L$, et L est une matrice de projection.

- 5°) Etude de la suite $((\lambda I_N + U)^k)$ lorsque la matrice U est nilpotente et $|\lambda| < 1$.
- a) Si U est une matrice nilpotente appartenant à $\mathcal{M}_N(\mathbb{C})$ d'indice de nilpotence P, on a d'après la formule du binôme (puisque U et I_N commutent) :

$$\forall k \ge p, \quad (\lambda I_N + U)^k = \sum_{i=0}^{p-1} {k \choose i} \lambda^{k-i} U^i.$$

Si $\| \cdot \|$ désigne une norme sur $\mathcal{M}_N(\mathbb{C})$, on en déduit par inégalité triangulaire :

$$\forall k \ge p, \quad \left\| (\lambda I_N + U)^k \right\| \le \sum_{i=0}^{p-1} {k \choose i} |\lambda|^{k-i} \left\| U^i \right\|.$$

b) Si $\lambda = 0$, on a $U^k = 0$ pour $k \ge p$ et la suite $((\lambda I_N + U)^k) = (U^k)$ converge bien vers 0. Si $0 < |\lambda| < 1$, la somme précédente est une somme finie de p termes, dont chacun d'eux tend vers 0 lorsque k tend vers $+\infty$ puisqu'on a pour $0 \le i \le p-1$:

$$\binom{k}{i} |\lambda|^{k-i} \|U^i\| = k(k-1) \dots (k-i+1) |\lambda|^{k-i} \frac{\|U^i\|}{i!} \le k^i e^{k \ln(|\lambda|)} \frac{\lambda^{-i} \|U^i\|}{i!}.$$

Or, comme $\ln(|\lambda|) < 0$, la suite réelle $k \mapsto k^i e^{k \ln(|\lambda|)}$ converge vers 0 (croissance comparée des fonctions puissances et exponentielles).

Ainsi, la norme $\|(\lambda I_N + U)^k\|$ tend vers 0 car elle est majorée par une somme finie de p termes tendant vers 0, et la suite matricielle $((\lambda I_N + U)^k)$ converge vers la matrice nulle.

- 6°) Recherche de la limite éventuelle d'une suite géométrique matricielle (M^k)
- a) Si la suite (M^k) converge vers une matrice $L \in \mathcal{M}_N(\mathbb{K})$, la suite (M^{2k}) converge aussi vers L car c'est une suite extraite de la suite convergente (M^{2k}) . Et comme on a également $M^{2k} = M^k M^k$, la continuité du produit matriciel démontre que (M^{2k}) converge vers L^2 .

Par unicité de la limite, on a $L = L^2$ et L est donc une matrice de projection.

- b) On considère un vecteur $y \in \text{Ker}(M I_N) \cap \text{Im}(M I_N)$.
- Il existe donc un vecteur $x \in \mathbb{K}^N$ tels que y = Mx x et comme $y \in \text{Ker}(M I_N)$, on a M y = y. Montrons maintenant par récurrence sur k la relation k $y = M^k x - x$. La relation est vraie pour k = 0 et 1.

Et si $k y = M^k x - x$, on a $k M y = M^{k+1} x - M x$ et comme M y = y et y = M x - x, il vient : $k y = M^{k+1} x - (y + x)$, donc : $(k + 1) y = M^{k+1} x - x$.

La relation est donc établie, et si $\| \| \cdot \| \|$ est subordonnée à une norme $\| \cdot \| \|$ de \mathbb{K}^N , il vient :

$$||x|| = ||M^k x - x|| \le ||M^k x|| + ||x|| \le ||M^k|| ||x|| + ||x||.$$

- La suite (M^k) étant convergente, donc bornée, il existe $C \in \mathbb{R}_+$ tel que : $\forall k \in \mathbb{N}, |||M^k||| \le C$, et :

$$||y|| \le \frac{1}{k} \left(\left| \left| \left| M^k \right| \right| \right| ||x|| + ||x|| \right) \le \frac{1}{k} (C+1) ||x||.$$

En faisant tendre k vers $+\infty$, on en déduit que ||y|| = 0, et donc y = 0.

Ainsi donc, $Ker(M - I_N) \cap Im(M - I_N) = \{0\}$ et la somme de ces deux sous-espaces est directe.

- Il en résulte que : $\operatorname{Ker}(M-I_N) \oplus \operatorname{Im}(M-I_N) = \mathbb{K}^N$ puisque le théorème du rang donne alors : $\operatorname{dim}(\operatorname{Ker}(M-I_N) \oplus \operatorname{Im}(M-I_N)) = \operatorname{dim}(\operatorname{Ker}(M-I_N)) + \operatorname{dim}(\operatorname{Im}(M-I_N)) = N.$

c) D'après ce résultat, pour tout vecteur $x \in \mathbb{K}^N$, il existe deux vecteurs $x_1 \in \text{Ker}(M - I_N)$ et $x_2 \in \mathbb{K}^N$ tels que $x = x_1 + Mx_2 - x_2$. Comme $Mx_1 = x_1$, on a en multipliant cette relation par M^k :

$$M^k x = x_1 + M^{k+1} x_2 - M^k x_2.$$

Si P est la matrice de la projection sur le sous-espace $Ker(M - I_N)$ dans la direction $Im(M - I_N)$, alors $x_1 = Px$ de sorte qu'on a pour tout entier naturel k:

$$M^k x = Px + M^{k+1} x_2 - M^k x_2.$$

Et puisque M^k tend vers L lorsque k tend vers $+\infty$, M^k x tend vers Lx lorsque k tend vers $+\infty$, par exemple parce que $||M^k x - Lx|| = ||(M^k - L)x|| \le |||M^k - L||| ||x||$ tend bien vers 0.

Le passage à la limite dans la relation précédente donne donc :

$$Lx = Px + Lx_2 - Lx_2 = Px.$$

On a donc Lx = Px pour tout vecteur x, et donc la limite L = P est la projection sur $Ker(M - I_N)$ dans la direction $Im(M - I_N)$.

Si 1 n'est pas valeur propre de M, alors $Ker(M - I_N) = \{0\}$ et P est le projecteur nul : alors L = 0.

- 7°) Conditions nécessaires de convergence d'une suite géométrique matricielle (M^k)
- a) Si λ est valeur propre de M, il existe un vecteur propre $x \in \mathbb{C}^N$ (donc non nul) vérifiant $Mx = \lambda x$. Par récurrence immédiate, pour tout entier naturel k, on a : $M^k x = \lambda^k x$.

Comme M^k converge vers L, M^k x converge vers Lx ainsi qu'on l'a justifié précédemment au 6° . La suite $(\lambda^k x)$ converge vers Lx, et chacune des N composantes $\lambda^k x_i$ $(1 \le i \le N)$ du vecteur $\lambda^k x$ converge donc vers la composante correspondante du vecteur Lx lorsque k tend vers $+\infty$.

Comme x n'est pas nul, l'une de ses composantes au moins, x_{i_0} par exemple, est non nulle.

En notant $L = (l_{ij})$, on voit qu'en particulier la suite complexe $(\lambda^k x_{i_0})$ converge vers $\sum_{j=1}^N l_{i_0 j} x_j$, et donc la suite complexe (λ^k) converge vers $\frac{1}{x_{i_0}} \sum_{j=1}^N l_{i_0 j} x_j$.

Or une suite géométrique complexe (λ^k) converge si et seulement si :

- soit $|\lambda|$ < 1, auquel cas sa limite est nulle,
- soit $\lambda = 1$, auquel cas elle est constante égale à 1.

Ce sont donc les seules valeurs propres possibles de M lorsque la suite (M^k) est convergente.

- b) On suppose que 1 est valeur propre de M et on désigne par r son ordre de multiplicité (où $r \ge 1$).
- Si un vecteur x appartient à $\text{Ker}(M-I_N)^2$, alors $y=Mx-x\in \text{Im}(M-I_N)\cap \text{Ker}(M-I_N)$ car $(M-I_N)\ y=(M-I_N)^2\ x=0$. D'après la question 6.b), on a : $\text{Im}(M-I_N)\cap \text{Ker}(M-I_N)=\{0\}$. Donc y=Mx-x=0, ce qui implique que $x\in \text{Ker}(M-I_N)$.

On en déduit que $Ker(M - I_N)^2 \subset Ker(M - I_N)$, et comme l'inclusion inverse est toujours vraie, on obtient bien l'égalité $Ker(M - I_N)^2 = Ker(M - I_N)$.

Raisonnons alors par récurrence pour montrer que $\text{Ker}(M - I_N)^{k+1} = \text{Ker}(M - I_N)^k$ pour $k \ge 1$. Le résultat est vrai pour k = 1 puisqu'on vient de l'établir.

Supposons qu'il soit vrai au rang k et montrons que : $Ker(M - I_N)^{k+2} = Ker(M - I_N)^{k+1}$.

On a comme d'habitude l'inclusion : $Ker(M - I_N)^{k+1} \subset Ker(M - I_N)^{k+2}$.

Pour établir l'inclusion inverse, considérons un vecteur $x \in \text{Ker}(M - I_N)^{k+2}$.

Alors $(M - I_N)^k x \in \text{Ker}(M - I_N)^2$, et puisqu'on a $\text{Ker}(M - I_N)^2 = \text{Ker}(M - I_N)$, il en résulte que $(M - I_N)^k x \in \text{Ker}(M - I_N)$, et donc $x \in \text{Ker}(M - I_N)^{k+1}$. On a ainsi prouvé l'égalité voulue.

Comme la suite $(\text{Ker}(M-I_N)^k)$ est pour $k \ge 1$ constante pour l'inclusion, on a en particulier, si r désigne l'ordre de multiplicité de la valeur propre $1 : \text{Ker}(M-I_N) = \text{Ker}(M-I_N)^r$. Ainsi, le sous-espace propre associé à 1 est égal au sous-espace caractéristique associé à 1. Or on sait que la dimension du sous-espace caractéristique associé à une valeur propre est égale à l'ordre de multiplicité de cette valeur propre, soit ici : $\dim(\text{Ker}(M-I_N)) = r$.

- 8°) Conditions suffisantes de convergence d'une suite géométrique matricielle (M^k)
- a) On considère un C-espace vectoriel E de dimension finie et on note f un endomorphisme de E dont λ est une valeur propre d'ordre de multiplicité r.
 Pour établir que F = Ker(f − λ Id_E)^r est stable par f, soit x un vecteur de F = Ker(f − λ Id_E)^r. On a donc (f − λ Id_E)^r (x) = 0, et a fortiori f ∘ (f − λ Id_E)^r (x) = 0. Et comme f et (f − λ Id_E)^r commutent puisque ce sont deux polynômes en f, on en déduit que : (f − λ Id_E)^r ∘ f(x) = 0. Ainsi, on a donc : f(x) ∈ F = Ker(f − λ Id_E)^r et ce sous-espace est bien stable par f.
- Pour tout $x \in F = \text{Ker}(f \lambda \operatorname{Id}_E)^r$, on a évidemment $(f \lambda \operatorname{Id}_E)^r(x) = 0$. Donc si \tilde{f} et Id_E sont les endomorphismes induits par f et Id_E sur F, on a $(\tilde{f} - \lambda \operatorname{Id}_E)^r = 0$, et $u = \tilde{f} - \lambda \operatorname{Id}_E$ est nilpotent, de sorte qu'on a bien : $\tilde{f} = \lambda \operatorname{Id}_E + u$ où $u \in \mathcal{L}(F)$ est nilpotent.
- b) Dans cette sous-question, on suppose que $M \in \mathcal{M}_N(\mathbb{C})$ a toutes ses valeurs propres $\lambda_1, \lambda_2, \dots, \lambda_p$ de module strictement inférieur à 1, et son polynôme caractéristique s'écrit :

$$\chi_M(X) = \det(X I_N - M) = (X - \lambda_1)^{r_1} (X - \lambda_2)^{r_2} \dots (X - \lambda_p)^{r_p}.$$

D'après le théorème de Hamilton-Cayley, on sait que $\chi_M(M)=0$, de sorte qu'on en déduit :

$$\chi_M(M) = (M - \lambda_1 I_N)^{r_1} (M - \lambda_2 I_N)^{r_2} \dots (X - \lambda_p I_N)^{r_p} = 0.$$

Si $a \neq b$, les polynômes X - a et X - b sont premiers entre eux, et $(X - a)^{\alpha}$ et $(X - b)^{\beta}$ aussi car si deux éléments sont premiers entre eux, leurs puissances le sont aussi.

Ici, λ_1 , λ_2 , ..., λ_p désignent les valeurs propres distinctes de M, et donc les polynômes $(X - \lambda_i)^{r_i}$ sont deux à deux premiers entre eux. Le théorème des noyaux peut donc s'appliquer et donne :

$$\mathbb{C}^N = \operatorname{Ker}(0) = \operatorname{Ker}(M - \lambda_1 I_N)^{r_1} \oplus \operatorname{Ker}(M - \lambda_2 I_N)^{r_2} \oplus \dots \oplus \operatorname{Ker}(M - \lambda_p I_N)^{r_p}.$$

- Notons alors f l'endomorphisme de \mathbb{C}^N canoniquement associé à M. D'après a), ces p sous-espaces $\operatorname{Ker}(M-\lambda_i\,I_N)^{r_i}$ sont stables par f, et la matrice de f dans une base de \mathbb{C}^N obtenue par concaténation de bases des sous-espaces $\operatorname{Ker}(M-\lambda_i\,I_N)^{r_i}$ est donc diagonale par blocs de dimensions respectives r_i puisque la dimension d'un sous-espace caractéristique est égale à l'ordre de multiplicité de la valeur propre correspondante.

De plus, f induit sur chacun de ces p sous-espaces $Ker(M - \lambda_i I_N)^{r_i}$ des endomorphismes qui sont de la forme $\tilde{f} = \lambda \tilde{Id} + u$ où u est nilpotent. Donc chacun des p blocs diagonaux de la matrice de f dans cette base est de la forme $\lambda_i I_{r_i} + N_i$ avec N_i nilpotente de taille r_i .

Finalement, si P désigne la matrice de passage de la base canonique à cette nouvelle base, on a :

$$P^{-1} M P = \begin{pmatrix} \frac{\lambda_1 I_{r_1} + N_1}{O} & O & \cdots & O \\ \hline O & \lambda_2 I_{r_2} + N_2 & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & O \\ \hline O & \cdots & O & \lambda_p I_{r_p} + N_p \end{pmatrix}$$

Et par conséquent :

$$M^{k} = P \begin{pmatrix} \frac{(\lambda_{1} I_{r_{1}} + N_{1})^{k}}{O} & \frac{O}{\cdots} & O \\ \hline \frac{O}{\odot} & (\lambda_{2} I_{r_{2}} + N_{2})^{k} & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & O \\ \hline \frac{O}{\odot} & \cdots & O & (\lambda_{p} I_{r_{p}} + N_{p})^{k} \end{pmatrix} P^{-1}.$$

Comme on suppose dans cette question que toutes les valeurs propres $\lambda_1, \lambda_2, \dots, \lambda_p$ de M sont de module strictement inférieur à 1, la question 5 permet d'affirmer que tous ces blocs diagonaux ont pour limite 0 quand k tend vers $+\infty$, ce qui donne : $\lim M^k = 0$.

c) On raisonne comme précédemment en tenant compte de : $\lambda_1 = 1$ et de : $\dim(\operatorname{Ker}(M - I_N)) = r_1$, ce qui implique $\operatorname{Ker}(M - I_N) = \operatorname{Ker}(M - I_N)^{r_1}$ puisque le premier de ces sous-espaces est inclus dans le second, et qu'ils ont donc même dimension. L'égalité obtenue en b) ci-dessus à l'aide du théorème de Hamilton-Cayley et du théorème des noyaux donne maintenant :

$$\mathbb{C}^{N} = \operatorname{Ker}(0) = \operatorname{Ker}(M - I_{N})^{r_{1}} \oplus \operatorname{Ker}(M - \lambda_{2} I_{N})^{r_{2}} \oplus \dots \oplus \operatorname{Ker}(M - \lambda_{p} I_{N})^{r_{p}}$$

$$= \operatorname{Ker}(M - I_{N}) \oplus \operatorname{Ker}(M - \lambda_{2} I_{N})^{r_{2}} \oplus \dots \oplus \operatorname{Ker}(M - \lambda_{p} I_{N})^{r_{p}}.$$

Sur Ker $(M-I_N)$, l'endomorphisme induit par f, endomorphisme canoniquement associé à M, est évidemment l'identité, et sur les autres sous-espaces $\operatorname{Ker}(M-\lambda_i I_N)^{r_i}$ avec $2 \le i \le p$, on raisonne comme on l'a déjà fait, ce qui justifie l'existence d'une matrice de passage P telle que :

$$P^{-1} M P = \begin{pmatrix} I_{r_1} & O & \cdots & O \\ \hline O & \lambda_2 I_{r_2} + N_2 & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & O \\ \hline O & \cdots & O & \lambda_p I_{r_p} + N_p \end{pmatrix}$$

- Et par conséquent :

$$M^{k} = P \begin{pmatrix} \frac{I_{r_{1}} & O & \cdots & O}{O & (\lambda_{2} I_{r_{2}} + N_{2})^{k} & \ddots & \vdots \\ \vdots & \ddots & \ddots & O \\ \hline O & \cdots & O & (\lambda_{p} I_{r_{p}} + N_{p})^{k} \end{pmatrix} P^{-1}.$$

Comme $|\lambda_2| < 1$, ..., $|\lambda_p| < 1$, la question 5 montre que les p-1 derniers blocs diagonaux ont pour limite 0 quand k tend vers $+\infty$, ce qui donne : $\lim M^k = P \operatorname{Diag}(I_{r_1}, 0, ..., 0) P^{-1}$.

La limite n'est autre que la matrice de projection sur $\text{Ker}(M-I_N)$ dans la direction de la somme des sous-espaces caractéristiques $\text{Ker}(M-\lambda_2 I_N)^{r_2} \oplus ... \oplus \text{Ker}(M-\lambda_p I_N)^{r_p}$.

d) Montrons l'inclusion : $\operatorname{Ker}(M - \lambda_k I_N)^{r_k} \subset \operatorname{Im}(M - I_N)$ pour $2 \le k \le p$. Si $x \in \operatorname{Ker}(M - \lambda_k I_N)^{r_k}$, on a : $(M - \lambda_k I_N)^{r_k} x = (M - I_N + (1 - \lambda_k) I_N)^{r_k} x = 0$. Comme $r_k \ge 1$, ceci implique : $(1 - \lambda_k)^{r_k} x + \sum_{j=1}^{r_k} \binom{r_k}{j} (1 - \lambda_k)^{r_k - j} (M - I_N)^j x = 0$.

Dans le \sum , l'indice j démarre à 1, ce qui établit que chacun des termes appartient à $\text{Im}(M-I_N)$, et comme il s'agit d'un sous-espace, la somme appartient aussi à $\text{Im}(M-I_N)$. Quitte à diviser par $(1-\lambda_k)^{r_k}$ qui n'est pas nul car $|\lambda_k|<1$ pour $2 \le k \le p$, on a : $x \in \text{Im}(M-I_N)$. L'inclusion est ainsi prouvée.

- On en déduit l'inclusion $\operatorname{Ker}(M-\lambda_2\,I_N)^{r_2}\oplus\ldots\oplus\operatorname{Ker}(M-\lambda_p\,I_N)^{r_p}\subset\operatorname{Im}(M-I_N).$ Par ailleurs, on a vu que : $\mathbb{C}^N=\operatorname{Ker}(M-I_N)\oplus\operatorname{Ker}(M-\lambda_2\,I_N)^{r_2}\oplus\ldots\oplus\operatorname{Ker}(M-\lambda_p\,I_N)^{r_p}.$ Il en résulte avec l'aide du théorème du rang que : $\dim(\operatorname{Ker}(M-\lambda_2\,I_N)^{r_2}\oplus\ldots\oplus\operatorname{Ker}(M-\lambda_p\,I_N)^{r_p})=N-\dim(\operatorname{Ker}(M-I_N)=\dim(\operatorname{Im}(M-I_N)).$ On en déduit l'égalité : $\operatorname{Ker}(M-\lambda_2\,I_N)^{r_2}\oplus\ldots\oplus\operatorname{Ker}(M-\lambda_p\,I_N)^{r_p}=\operatorname{Im}(M-I_N).$ La limite n'est autre que la matrice de projection sur $\operatorname{Ker}(M-I_N)$ dans la direction de la somme des sous-espaces caractéristiques $\operatorname{Ker}(M-\lambda_2\,I_N)^{r_2}\oplus\ldots\oplus\operatorname{Ker}(M-\lambda_p\,I_N)^{r_p}=\operatorname{Im}(M-I_N),$ et on retrouve ainsi le résultat de 6.c).
- e) Si $M \in \mathcal{M}_N(\mathbb{C})$, il résulte des questions 7 et 8 que la suite géométrique matricielle (M^k) converge si et seulement si l'une des deux situations suivantes est réalisée :
 - toutes les valeurs propres de M sont de module strictement inférieur à 1. Dans ce cas, la limite de la suite (M^k) est la matrice nulle.
 - l'une des valeurs propres de M est égale à 1, et si r est sa multiplicité, $\dim(\operatorname{Ker}(M-I_N))=r$, et toutes ses autres valeurs propres sont de module strictement inférieur à 1. Dans ce cas, la limite de la suite (M^k) est la matrice de la projection sur le sous-espace propre $\operatorname{Ker}(M-I_N)$ dans la direction $\operatorname{Im}(M-I_N)$ qui lui est alors supplémentaire.

Notons que ce dernier résultat reste aussi valable dans le 1^{er} cas où 1 n'est pas valeur propre de M, puisque la matrice de la projection sur $Ker(M - I_N)$ est alors la matrice nulle.